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Summary

� Many perennial plants display masting, that is, fruiting with strong interannual variations,

irregular and synchronized between trees within the population. Here, we tested the hypothe-

sis that the early flower phenology in temperate oak species promotes stochasticity into their

fruiting dynamics, which could play a major role in tree reproductive success.
� From a large field monitoring network, we compared the pollen phenology between tem-

perate and Mediterranean oak species. Then, focusing on temperate oak species, we explored

the influence of the weather around the time of budburst and flowering on seed production,

and simulated with a mechanistic model the consequences that an evolutionary shifting of

flower phenology would have on fruiting dynamics.
� Temperate oak species release pollen earlier in the season than do Mediterranean oak

species. Such early flowering in temperate oak species results in pollen often being released

during unfavorable weather conditions and frequently results in reproductive failure. If pollen

release were delayed as a result of natural selection, fruiting dynamics would exhibit much

reduced stochastic variation.
� We propose that early flower phenology might be adaptive by making mast-seeding years

rare and unpredictable, which would greatly help in controlling the dynamics of seed con-

sumers.

Introduction

Reproduction in many perennial and wind-pollinated plant
species is characterized by masting, that is, synchronized and
highly variable amounts of seed production over the years within
a population (Janzen, 1976; Kelly & Sork, 2002). Masting is
known to impact the demography and evolution of seed con-
sumers strongly (Yang et al., 2010; Venner et al., 2011; Gamelon
et al., 2013; P�elisson et al., 2013; Rey et al., 2015; Bogdziewicz
et al., 2016), with cascading effects on forest biodiversity dynam-
ics together with major economical and societal issues (e.g. forest
regeneration, disease propagation) (Crawley, 2000; Ostfeld &
Keesing, 2000; Frey et al., 2007; Bogdziewicz & Szymkowiak,
2016). Despite the increasing number of studies addressing the
issue of masting and its consequences for ecosystem functioning
and service provisioning, its proximate causes remain difficult to
disentangle, mainly because of the diversity of candidate mecha-
nisms possibly interacting and the strong stochasticity (in the
sense of unpredictability for observers or seed consumers) in the

fruiting dynamics (Crone & Rapp, 2014; Pearse et al., 2016;
Vacchiano et al., 2018).

Fruiting of mast-seeding species, besides fluctuating strongly
and synchronously over the years, is characterized by negative
temporal autocorrelation (Sork et al., 1993; Herrera et al., 1998;
Koenig & Knops, 2000; Koenig et al., 2003). Such autocorrela-
tion is classically interpreted as resulting from the resource deple-
tion of the trees following mast-seeding years, which prevents
them from producing flowers and seeds the following year (i.e.
resource depletion hypothesis; Monks & Kelly, 2006; Barringer
et al., 2013; Crone et al., 2009, but see Kelly et al., 2013). Conse-
quently, the fruiting dynamics are potentially extremely asym-
metrical, with lean-seeding years consistently occurring after a
mast-seeding year (a deterministic component of masting as a
result of reserve depletion of trees) while mast-seeding years may
not systematically follow one lean-seeding year. This irregularity
in the occurrence of mast-seeding years (hereafter called the
stochastic component of masting corresponding to the fluctua-
tions not explained by the negative temporal autocorrelation)
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would depend on weather conditions possibly affecting resource
acquisition (Smail et al., 2011), flower development, pollination
and fertilization of female flowers (Cecich & Sullivan, 1999;
Koenig et al., 2015; Pearse et al., 2015; Sabit et al., 2016;
Bogdziewicz et al., 2017a; Schermer et al., 2019) or even fruit
ripening (Richardson et al., 2005; P�erez-Ramos et al., 2015;
Chang-Yang et al., 2016; Buechling et al., 2016). Furthermore,
such a weather effect can act as an ‘environmental veto’ by nearly
completely preventing flower or seed development at the tree
population scale (Feret et al., 1982; Cecich & Sullivan 1999;
Bogdziewicz et al., 2018a, 2019).

A promising avenue to understanding both the proximate and
evolutionary causes of masting is to identify the key tree life-his-
tory traits governing the stochastic component of masting.
Flower phenology would be a serious candidate as its evolution-
ary change (i.e. the timing of flowering at the population level
which may shift independently of any climate change) could the-
oretically act on masting in two complementary ways: by modify-
ing the likelihood of late frost events at the vulnerable flowering
stage (Garc�ıa-Mozo et al., 2001; Augspurger, 2009), which can
act as environmental veto and may strongly impede fruit set
(Feret et al., 1982; Cecich & Sullivan 1999; Bogdziewicz et al.,
2018a); and by partly setting the weather conditions influencing
pollen maturation and release which would play a key role in pol-
len limitation and then in fruiting success. In this sense, high
spring temperature has recently been shown to favor phenological
synchronization between trees, by reducing the flowering period,
which in turn would increase pollination success and promote
mast-seeding years (Koenig et al., 2008, 2012, 2015; Bogdziewicz
et al., 2017a). High spring temperature also increases the annual
amount of airborne pollen that can be mobilized for reproduc-
tion. Schermer et al. (2019), after analyzing the interannual varia-
tion of both airborne pollen amount and its temporal
distribution, suggested that pollen limitation in European tem-
perate oaks would rely more on the annual amount of airborne
pollen than on tree synchrony.

Based on these findings, the aim of our study was to test the
hypothesis that flower phenology is a key trait driving the
stochastic component of masting in two temperate oak species
(Quercus petraea and Quercus robur) by keeping mast-seeding
years rare and unpredictable. We thus examined the conse-
quences of an evolutionary shift in the flower phenology on their
masting. For this purpose, we combined empirical and theoreti-
cal approaches. First, we tested the hypothesis that pollen phenol-
ogy is early in these two temperate oak species in comparison to
Mediterranean oak species (Quercus ilex and Quercus pubescens)
and we examined the consequences of phenological differences
between the two groups on the sensitivity of annual amounts of
airborne pollen to spring weather conditions. Second, focusing
exclusively on the two temperate oak species for which we have
an extensive network of fruiting monitoring, we explored the
consequences of an evolutionary change in flower phenology on
fruiting dynamics. For this last point, we proceeded in two steps:
first, we determined the key weather conditions surrounding the
timing of budburst that should affect fruiting success (late frost
and/or weather conditions affecting pollen release and diffusion);

and then we built a mechanistic model (resource budget model
(RBM); Isagi et al., 1997; Satake & Iwasa, 2000, 2002) and we
simulated fruiting dynamics according to several evolutionary
flower phenological strategies (i.e. earlier or later phenology than
currently observed).

Materials and Methods

Study species

We focused on the four most abundant oak monoecious
species in France: Quercus robur L., Q. petraea Liebl. L.,
Q. ilex L. and Q. pubescens Willd. Q. robur and Q. petraea are
present from southern Scandinavia to Spain and western Rus-
sia in Europe. Q. ilex is the most dominant tree species in the
central and western parts of the Mediterranean basin. Q.
pubescens has an intermediate distribution, co-occurring with
Q. robur and petraea in central Europe and with Q. ilex in
southern Europe. Q. robur and Q. petraea co-occur all over
France except along the Mediterranean basin where they are
replaced by Q. pubescens up to 1200 m, and Q. ilex, especially
at lower elevations (Badeau et al., 2017). The phenologies of
the four species show some differences. Budburst occurs
between late April and early May for Q. robur, Q. petraea and
Q. pubescens (Badeau et al., 2017), and between April and
May for Q. ilex, depending on the latitude (Garcia-Mozo
et al., 2007; Ogaya & Penuelas 2004; Misson et al., 2011;
Fernandez-Martinez et al., 2012). The four species can have
either vegetative buds with leaves only, mixed buds with male
flowers, female flowers and leaves or reproductive buds with
male flowers only. Male flowers are mature 2 wk after bud
flush and 2 wk before female flowers. Leaves have reached
c. 75% of their final size when female flowers become recep-
tive (Badeau et al., 2017). In all four species, fertilization
occurs at the end of June or early July (Pesson & Louveaux,
1984).

Phenology, pollen and fruiting data

The airborne amount of oak pollen was recorded daily using
Hirst traps (Hirst, 1952) at 43 sites in France during a 22 yr sur-
vey (1994–2015; R�eseau National de Surveillance A�erobi-
ologique; see Fig. 1a for a map; see Supporting Information
Table S1 for the pollen-sampling site characteristics). As the oak
species was not recorded in the pollen dataset, we relied on the
national forest inventory (Institut G�eographique National,
France; see the forest stand dataset providing the forest cover rate
of each species) to determine within a 50 km radius at each pol-
len-sampling site the covering surface of each oak species. We
split the pollen dataset into two sub-datasets, one called ‘temper-
ate’, including sites where > 80% of oaks are temperate oak
species (Q. robur and/or Q. petraea, 35 sites), and the other one
called ‘Mediterranean’, including sites where > 80% of oaks are
Mediterranean oak species (Q. ilex and/or Q. pubescens, eight
sites). At each site and each year, the total amount of airborne
pollen was computed and divided by the percentage of the surface
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covered by oak trees so as to account for disparities in forest den-
sity between the sites; this corrected amount of pollen (hereafter
airborne pollen amount) will be used in all subsequent analyses.

We used data on the budburst date and the fruiting dynamics
of temperate oak species from the ONF-RENECOFOR network
(Ulrich, 1995) covering 30 sites for 14 yr (1994–2007) (see
Fig. S1 for a map and Table S2 for the GPS coordinates). Among
the 30 sites, 19 are dominated by Q. petraea, nine by Q. robur
and two of them are mixed oak forests (see Table S2). These sites
are all different from the pollen-sampling sites. Acorn production
was estimated yearly at each site on a fixed 1 acre (0.405 ha) sur-
face where 10 nonneighboring mature trees were each equipped
with one 0.5 m2 raised litter-fall trap; the mature acorns collected
were counted exhaustively and summed for the 10 trees. The
budburst date was estimated at each site and year as the earliest
date at which the first 10% of trees had 20–50% of their buds
open (phenological stage BBCH 9; Meier et al., 2009).

Meteorological data and their use

On the basis of the daily weather data extracted from the
SAFRAN spatially explicit database (89 8 km mesh size grid)
(Durand et al., 1993), we calculated for each of the 43 pollen and
30 acorn sampling sites the mean daily temperature (°C) and the
cumulative rainfall (mm) during different periods in spring to
test the effect of weather conditions on the amount of airborne
pollen in both temperate and Mediterranean oak species and on
fruit production in temperate oak species.

At each of the 30 acorn-sampling sites of the ONF-
RENECOFOR network, we also computed the minimum daily
temperature (to check for the possibility of late frost acting as an
environmental veto; see later for a discussion of threshold detec-
tion). Following Lebourgeois et al. (2008), we first modeled the

budburst date available at each of the 30 acorn-sampling sites as a
linear function of the mean March temperature recorded every
year at these sites (see Table S3; Fig. S2). Using this negative rela-
tionship, we then inferred the budburst date each year at each of
the 35 pollen-sampling temperate oak sites. This allowed us to
test if the weather conditions around the budburst date (e.g. the
occurrence of late frost within 30 d before, or the mean tempera-
ture 1 month afterwards) were linked to both amount of airborne
pollen and fruit production. Focusing on these identified key
weather conditions around budburst date and using the meteoro-
logical data retrieved at each site since 1959, we carried out fur-
ther simulations using the RBM (see RBM modeling section) to
explore the effect of a shift in flower phenology in temperate oak
species on fruiting dynamics.

Data analysis

We compared the ‘temperate’ and ‘Mediterranean’ oak popula-
tions for their pollen phenology. We analyzed the differences in
the median date of pollen release (i.e. the day by which 50% of
the annual airborne pollen has already been released) using Stu-
dent’s t-test.

We analyzed the sensitivity of airborne pollen amount to vari-
ous spring weather variables separately for the ‘temperate’ and
‘Mediterranean’ sites as follows. First, for various spring periods,
we performed a principal component analysis (PCA) on mean
temperature and cumulative rainfall, and used the first principal
component (PC1) as a synthetic weather variable reflecting both
temperature and rainfall of each spring periods (see Table S4).
Second we performed generalized linear mixed models (GLMMs
with Gaussian family and identity link) with log-transformed air-
borne pollen amount as the dependent variable and the PC1 vari-
able – depending on the spring period considered (see Table S4)

(a) (b)

Fig. 1 Comparison of the pollen phenology between the temperate and Mediterranean oak forests. (a) Spatial distribution of the 43 pollen-sampling sites.
Temperate oak forests are defined to include 80% or moreQuercus petraea and/orQuercus robur (35 sites; see orange circles) and Mediterranean oak
forests include 80% or moreQuercus ilex and/orQuercus pubescens (eight sites; green triangles) relative to the whole oak forest area comprised within a
50 km radius around each pollen-sampling site. The GPS coordinates and the forest cover rate of each oak species of all pollen-sampling sites are indicated
in Supporting Information Table S1. (b) Cumulative frequency distribution of the median date of oak pollen release for the ‘temperate’ (orange line) and
‘Mediterranean’ (green line) oak forests. The median date was calculated each year (from 1994 to 2015) at each site as the day by which 50% of the
annual pollen amount has already been released. Dates are in Julian days, that is, the number of days elapsed since 1 January (day 1) of each year.
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– and the lag-1 yr autocorrelation of airborne pollen amount as
covariates, considering the factors ‘site’ and ‘year’ as random
effects. We selected the most parsimonious GLMM separately
for the two forest types using the Akaike information criterion
(see results in Table S5).

To assess the importance of pollen phenology on masting in
temperate oak species, we tested the sensitivity of fruit produc-
tion to weather at different time periods around the budburst
date, from the date on which male flowers become particularly
sensitive to frost right up to pollen release. To ensure the robust-
ness of the results reported, we split the whole acorn dataset into
two mirror sub-datasets, each one comprising full time series of
15 acorn-sampling sites evenly distributed over similar altitude,
longitude and latitude gradients (see Fig. S1). We conducted an
exploratory approach on a first sub-dataset to identify candidate
periods and their weather conditions (the minimum temperature
threshold below which late frost may act as an environmental
veto on fruiting). We fitted negative binomial GLMMs with log
link to estimate fruit production with the lag-1 yr autocorrelation
of fruit production, the mean temperature over 30 d after bud-
burst date and the occurrence of frost during several periods
around budburst date as binary factor (i.e. considering frost
whenever minimum daily temperature falls below a threshold
value tested) as covariates, considering the factors ‘site’ and ‘year’
as random effects to increase the probability of identifying candi-
date periods and minimum temperature threshold (see
Table S6). On the second sub-dataset, we tested whether the
weather variables previously identified were still detected by fit-
ting a negative binomial generalized linear model (GLM) with
the factors ‘site’ and ‘year’ as fixed effects (see Table S7).

All statistical analyses were performed with the R free software
environment (v.3.4.3, http://cran.r-project.org). We performed
the PCA using the ‘dudi.pca’ function in the ADE4 package (Dray
& Dufour, 2007), and fitted the multiple additive GLMMs using
the ‘lmer’ function in the LME4 package (Bates et al., 2015).

RBM modeling

We built an RBM, that is, an individually based, spatially explicit
model accounting for the individual strategies for allocating
resources into reproduction, and allowing us to simulate individ-
ual flowering and fruiting dynamics within a population. We
modified a previously published RBM (Venner et al., 2016;
Schermer et al., 2019) to incorporate the effect of pollen phenol-
ogy on masting in temperate oaks. According to the former
RBM, interannual variations of fruit production may partly result
from interannual variations of airborne pollen available for repro-
duction that depend on both the amount of pollen produced by
trees and spring temperature at the time of pollen release (see
Schermer et al., 2019). Whereas in the former RBM (Schermer
et al., 2019), the timing of pollen release was set to April, irre-
spective of the year and the site, the biological realism of the
RBM presented here was improved by integrating the identified
key weather conditions around the actual timing of budburst (i.e.
pollen phenology; see Methods S1 for further details) and we
used this enhanced RBM to study the impact of a theoretical

evolutionarily shifted pollen phenology (i.e. budburst date) on
the fruiting dynamics of temperate oaks. Notably we explored
the impact on fruiting dynamics of a fixed 15 d shift in the bud-
burst date, either advanced or delayed, depending on the model,
and a 15 d delayed budburst date corresponding to the actual
pollen phenology of Mediterranean oaks (this study) and to that
of ash trees (Fraxinus spp.) in the temperate region (Vitasse et al.,
2009). We further examined a 30 d delayed pollen phenology, as
observed for beech (Fagus spp.) in the temperate region (see
Vitasse et al., 2009).

The four classical mathematical descriptors for masting are:
the individual coefficient of variation of fruiting intensity (CVi)
describing the individual between-year variability in seed pro-
duction; the degree of synchrony among trees within the popu-
lation in their fruiting interannual dynamics (classically the
mean of pairwise correlation between crop size of individuals
within the population); the population coefficient of variation
(CVp) describing the fruiting temporal variation at the popula-
tion level; and the negative temporal autocorrelation (often at
1 yr time lag) of seed production (classically ACF1; Koenig
et al., 2003; Herrera, 1998; Kelly & Sork, 2002; Buonaccorsi
et al., 2003). None of these descriptors, however, is able to
describe the asymmetry in the fruiting dynamics (see the Intro-
duction).

Here, to analyze the results of the simulations, we character-
ized the intensity of the fluctuations with the CVp parameter.
Complementarily, to quantify the deterministic and stochastic
components of fruiting dynamics and the impact of flower phe-
nology on these components, we analyzed temporal autocorrela-
tion at the population scale using the standard statistic:

S ¼
XT�1

t¼1

ðxt xtþ1Þ with xt ¼ zt � z

where T is the length of the fruiting series and z , zt and xt corre-
spond, respectively, to the average annual crop size of the popula-
tion, the crop size at year t and the centered crop size at year t.
This statistic corresponds to the numerator of several standard
measures of autocorrelation (Wald & Wolfowitz, 1943; Dray
et al., 2010).

For each flower phenology, we evaluated the significance of
the observed statistic (S) by comparing its value to the distribu-
tion under the null hypothesis obtained using 999 permutations
of the fruiting series. To compare the different phenology sce-
nario for their degree of stochasticity in fruiting dynamics, we
computed the ‘standardized effect size’ (SES, Gotelli & McCabe,
2002) by standardizing the observed statistics (S) by the means
and SDs estimated under the null hypothesis. Under the null
hypothesis that there is no autocorrelation in the fruiting series,
the distribution of SES should be centered on 0 with SD = 1,
while SES will be all the more negative when the negative tempo-
ral autocorrelation is strong (or when the stochastic component
of the masting is weak). Under the assumption that phenology
has no effect on the stochastic component of masting, the distri-
bution of SES should be similar between the different phenologi-
cal scenarios.
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In addition, we used a dual metric reflecting the degree of
asymmetry in the fruiting dynamics as follows: the probability
PL/M for a lean-seeding year (L) to follow a mast-seeding year
(M) at the population scale; and the probability PM/L of having a
mast-seeding event (M) the year following a lean-seeding year
(L). In the RBM outputs, mast- and lean-seeding years are
defined for fruiting allocation > 0.7 and < 0.3, respectively (the
value 1 being, on average, the mean amount of resources acquired
annually by trees that can be allocated to current reproduction or
stored for future reproduction; see Methods S1). A sensitivity
analysis was performed by testing various threshold values to
define these two categories of fruiting level and the results remain
qualitatively similar (see Fig. S3).

For each set of parameters (or sites), 100 repeated simulations
of fruiting dynamics were run over 2000 yr; we then computed,
over the last 100 years, the CVp to describe masting intensity,
the S and SES for analysis of temporal autocorrelation of masting
(i.e. its deterministic and stochastic components), and the two
frequencies PL/M and PM/L for describing masting asymmetry.
We were then able to compare various scenarios differing in their
flower phenology for the degree of asymmetry in their associated
fruiting dynamics.

We carried out additional simulations to analyze the relative
contribution of the two modeled meteorological effects (by inte-
grating only one of the two mechanisms at a time, i.e. either the
‘environmental veto’ effect related to late frosts or the effect of
weather conditions on pollen aerial diffusion) on the fruiting
dynamics under the different phenological scenarios. Finally, to
address the issue of decoupled investment made by trees into
male and female flowers in pollen limitation and fruiting dynam-
ics (see Crone & Rapp, 2014), we carried out sensitivity analyses
considering that the relative allocation of male and female flower-
ing resources could deviate from a strict equilibrium of 0.5. We
ran analyses in two complementary ways, considering: that trees
may have their own, consistent allocation ratio into male flower-
ing (defined for each tree by randomly sampling in a Gaussian
distribution with 0.5 (0.1), mean (SD)); or each tree may vary
from one year to the next in its relative allocation into male and
female flowers (defined for each tree and each year by sampling
the ratio in a Gaussian distribution with 0.5 (0.1), mean (SD)).

Data availability

Data supporting the results are available from the Dryad Digital
Repository (doi: 10.5061/dryad.p8cz8w9k3).

Results

Pollen phenology in temperate and Mediterranean oaks

In oak species growing in the temperate region, pollen is released
mainly from the second half of April to early May, occurring ear-
lier in the season as latitude decreases (see Fig. S4). Mediter-
ranean oak species, despite being located south of the temperate
oak forests (Fig. 1a), release their pollen mainly in May (Fig. 1b),
that is, about 2 wk later on average than temperate oaks (two-

sample Student’s t-test: t = 17.42, df = 676, P < 0.001, 95% CI:
12.96–16.25).

Depending on the region (temperate or Mediterranean), pol-
len release thus occurs under contrasting weather conditions
owing to phenological differences between oak species (Fig. 2a).
In the temperate region, the annual airborne pollen amount was
positively related to April temperature, following a logistic rela-
tionship (see Table S8 for results of the GLMM selection; see
Table S9 for results of the model selection between the logistic
and linear models) in line with a recent study (Table S5; Scher-
mer et al., 2019). Conditions for pollen release seem optimal for
mean April temperature > 13°C (value determined by a threshold
model; Huber, 1964; see Fig. S5), which occurred in 11% and
100% of the sites and years for temperate and Mediterranean oak
species, respectively (Fig. 2b).

Impact of a shift in the pollen phenology on fruiting
dynamics in temperate oaks

In the temperate region, the early timing of pollen release makes
reproduction sensitive to late frost (�5°C or less) whenever it
occurs within 30 d before the budburst date (Fig. 3a; Tables S6,
S7), and to the mean temperature > 30 d after budburst date (i.e.
spring temperature impacting airborne pollen amount; see
Fig. S6) (see also Fig. 3b; Tables S6, S7, S9).

Our RBM simulations suggest that fruiting dynamics of tem-
perate oak tree populations would be sensitive to evolutionary
shifting pollen phenology (Figs 4, 5). Although fruiting dynamics
fluctuate greatly under all phenological scenarios (Fig. 4), the
CVp would decrease under later phenology (Fig. 5a) and the neg-
ative temporal autocorrelation would become more pronounced
(Fig. 5b) and, hence, variation in the fruiting dynamics more
deterministic. A shift towards earlier pollen phenology would be
accompanied by more pronounced asymmetry of fruiting
dynamics (Fig. 5c,d): the probability that a lean-seeding year
would follow a mast-seeding year remained unchanged and high
(i.e. mainly between 0.8 and 1) irrespective of the phenology sim-
ulated (Fig. 5c). By contrast, the probability of having a mast-
seeding year after a lean-seeding one was very variable according
to the different phenological scenarios and was lowest for the ear-
liest phenologies (Fig. 5d).

By considering weather factors in isolation in the modeling,
we revealed that the veto-like effect of late frost would play only a
minor role in fruiting dynamics under current phenology,
whereas the weather conditions that influence pollen spread, as
they stand, would retain a key role (Fig. S7b). If oak phenology
was 15 d earlier, the negative effect of late frost would then
emerge (Fig. S7a). Later flower phenologies would almost sys-
tematically meet optimal conditions for reproduction, without
severe weather conditions unfavorable to flower survival or pollen
diffusion (Fig. S7c,d).

Overall, our results suggest that if temperate oak evolved
towards delayed phenology (independently of any climate
change), their fruiting dynamics would still fluctuate, but in a
much less stochastic way, and mast-seeding years should then
become more predictable (i.e. mainly driven by negative
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temporal autocorrelation). These results were obtained consider-
ing that trees invested equal amounts of energy into male and
female flowers; our findings remain robust to departures from
that assumption (see Fig. S8).

Discussion

Whereas the timing of pollen release is delayed with increasing
latitude within temperate oak species, our results revealed that
these species have much earlier pollen phenology (15 d differ-
ence) than Mediterranean oaks. In the four species studied, fertil-
ization consistently takes place during the same period (late June,
early July) (Pesson & Louveaux, 1984) and at a much later date
than pollination, suggesting that the phenology of temperate oak
species could theoretically be later than it actually is. In temperate
oak forests, we show that the early pollen phenology observed in
the field is often associated with weather conditions that are unfa-
vorable to pollen maturation and/or aerial diffusion, which could
explain why reproductive failure is common. Our results suggest
that such advanced pollen phenology would give trees a selective
advantage by generating a strong stochastic component in fruit-
ing dynamics, which is possibly decisive for effective control of
seed consumer demography.

The early spring pollen maturation of temperate oak species
could be seen as maladaptive owing to the suboptimal weather
conditions encountered at the time of pollen release (c. 10% of
years have mean temperature > 13°C over 30 d after budburst
date (Figs 3b, S6)) and to the probability of suffering frost dam-
age at flowering (i.e. 5% of years with minimum temperature
<�5°C occurring within 30 d before the budburst date). Such
early pollen phenology might lead to frequent, massive fruiting
failure and explain why the fruiting dynamics of some oak species
are very sensitive to spring weather conditions (Pearse et al.,
2014; Koenig et al., 2015; Bogdziewicz et al., 2017a; Caignard
et al., 2017; Nussbaumer et al., 2018; Schermer et al., 2019). By
contrast, Mediterranean oak pollen, because of the warmer cli-
matic conditions encountered and their delayed pollen phenol-
ogy, experience weather conditions that are usually favorable to
pollen maturation and release (Fig. 2), with very rare exposure to
late, intense frost (Fig. S9b). The evolutionary divergence in pol-
len phenology between these oak species would then sustain the
diversity of their responses to spring weather conditions and
partly explain why finding common determinants of masting is
so difficult in the genus Quercus (Sork et al., 1993).

From an evolutionary perspective, pollen phenology could be
seen as a key life-history trait that partly controls the degree of
stochasticity in fruiting dynamics in temperate oak species. Based
on our RBM, we show that contrasting yet realistic variations in
oak flower phenology (i.e. within the range of other wind-polli-
nated forest species) would all still generate large fluctuations in
fruiting (Fig. 4). However, the stochastic component of masting
was increased only when simulating earlier pollen phenology
(Fig. 5b,d), which generated conditions that are often unfavor-
able to reproduction. As proposed from theoretical work (Rees
et al., 2002), disturbance in fruiting dynamics is probably essen-
tial to efficiently control the dynamics of seed consumer popula-
tions and maximize tree fitness. Oak acorns are a pulsed resource
for various consumers that affect their population dynamics (in-
sects, Venner et al., 2011; birds, McShea, 2000; rodents, Wolff,
1996; ungulates, Gamelon et al., 2017). Among consumers,
insects specialized in this resource are probably the most
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problematic for the following reasons: insects are able to respond
demographically very quickly to the fluctuations of the resource
(Bogdziewicz et al., 2018b); acorn consumption by insects
severely reduces seed germination success and seedling survival
(Andersson, 1992; Mu~noz et al., 2014; Leiva et al., 2018; Yi
et al., 2019); and several weevil species commonly coexist on the
same individual trees and display widely diverse life-history traits
(Venner et al., 2011; P�elisson et al., 2012, 2013; Rey et al.,
2015), making it difficult for the trees to control the dynamics of
the whole insect community. Efficient control of such insect
diversity is probably tightly linked to strong stochastic compo-
nent in the fruiting dynamics. In temperate oak species, our

results suggest that early phenology would play this pivotal role
in inducing weather conditions most often detrimental to yearly
reproduction, thus making mast-seeding years unpredictable for
seed consumers, and hence maximizing tree fitness. Our results
are therefore in line with the recent proposal by Bogdziewicz
et al. (2019) that the weather conditions causing frequent fruiting
failure are traditionally perceived as negative for plants, but
would help to maximize their lifetime reproductive success.

Under the current phenology of temperate oak species, fruiting
failure is explained much more widely by climatic conditions that
are unfavorable to pollen maturation or diffusion (i.e. the month
following the budburst date) than by the occurrence of late frost
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(the month preceding the budburst date), which is relatively rare
and which would only have minor effects on fruiting dynamics
(see Figs 3a, S9b). Although very early phenology would make
fruiting dynamics even more stochastic (e.g. by reinforcing the
‘environmental veto’ effect of late frost), it would probably be too
costly in terms of fitness, either by producing too rare mast-seed-
ing years or by impairing leaf growth (see later).

Mediterranean oak species are also exposed to greatly diverse
seed consumers whose control is also expected to require stochas-
tic fruiting dynamics. Although not studied here, the fruiting
dynamics of Mediterranean oak species are probably as variable
and stochastic as those of temperate oak species (Bogdziewicz
et al., 2017b). The late flower phenology of Mediterranean oaks
seems to promote weather conditions mainly favorable to pollina-
tion (Fig. 2b). In consequence, the stochastic component of
masting is likely to be independent of weather-driven pollination
failure, instead being a result of severe drought in spring or sum-
mer, resulting in frequent and very high fruit abortion rate (Fer-
nandez-Martinez et al., 2012; P�erez-Ramos et al., 2015 (for a
review); Pearse et al., 2015; Bogdziewicz et al., 2017b). In
Mediterranean oak species, the late flower phenology could be a
way of not adding noise to the already very stochastic fruiting
dynamics and, consequently, keeping the frequency of mast-seed-
ing years at a minimum threshold. Overall, the proximate mecha-
nisms of oak masting (i.e. including environmental veto as a
result of late frost or water stress, weather conditions impacting

flower maturation and pollen diffusion) would probably depend
on the species, local ecological conditions and/or local adaptation
(Koenig et al., 2016). Considering this last point, the evolution
of flower phenology could be rapid – as it is tightly linked to leaf
phenology, which is itself quickly evolving (Franji�c et al., 2011) –
and could thus be responsible for the short-term change in the
weight of late frost and weather conditions at the time of pollen
release in masting.

Our study, in line with previous work (Koenig et al., 2015;
Bogdziewicz et al., 2017b), underlines the need to elucidate the
interdependency between fruiting strategies (i.e. the interannual
dynamics of fruiting, possibly masting) and the phenology of
perennial plants. For example, in oak species, flower maturation
is organically linked to leaf maturation because most buds are
compound buds (i.e. containing leaves and flowers); leaf and
flower phenologies are thus tightly related (Koenig et al., 2012).
The evolution of flower phenology might thus be a by-product
of, and driven by, leaf phenology that would be predominantly
selected to maximize carbon gain through photosynthesis; in this
sense, the early flower phenology of temperate oak (and the
stochasticity induced in masting) would be an exaptation. Most
likely, the phenology of temperate oaks would result from a
tradeoff between the advantage of being early to trigger stochastic
fruiting dynamics and to lengthen the canopy duration, and the
advantage of being late to avoid exposing the nascent leaves to
late frost.
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Fig. 5 Impact of an evolutionary shift in
flower phenology on the fruiting dynamics of
temperate oak species. Four flower
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fruiting dynamics through simulation with
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recorded in the field at the 30 fruit sites. The
early flower phenology corresponds to a 15 d
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More generally, it would be useful to develop integrative work
on phenology and masting through comparative approaches of
the dynamics of fruiting and phenology of flowers and leaves in
wind-pollinated perennial plant species. For example, in species
with separate flower and leaf buds, pollen phenology could be
even earlier, and fruiting dynamics more stochastic, than in other,
more constrained species. From a more theoretical perspective, it
might be worth combining several models, including those con-
sidering ecophysiological traits for their impact on plant phenol-
ogy (Chuine & Beaubien, 2001), those looking at the mechanistic
traits of fruiting dynamics (Isagi et al., 1997; Abe et al., 2016; this
work) – for example, the evolution of traits affecting resource allo-
cation in reproduction – and those dedicated to simulating seed
consumer dynamics (Rees et al., 2002; Tachiki & Iwasa, 2013), to
link explicitly the proximate causes of masting to fitness conse-
quences and plant regeneration success. Coupling these
approaches is all the more urgent as phenology is greatly affected
by climate change in a vast number of plant species, which could
impact their fruiting dynamics, the success of regeneration and
ultimately the assembly of perennial plant species in forest ecosys-
tems and the associated ecosystem services (Cleland et al., 2007).
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