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Hiltbrunner et al.1 apply a reductionist approach to argue that the 
evidence for widespread terrestrial oligotrophication2 should be 
replaced with a two-factor explanation (growth dilution and depo-
sitional signatures) that does not invoke reductions in N availabil-
ity, that is, the supply of N relative to plant demand. Contrary to 
any “adjustment of leaf photosynthetic capacity and a widening 
of leaf C:N ratios,” there is little evidence that observed declines 
in foliar [N] are caused solely by photosynthetic downregulation. 
Photosynthetic downregulation is not universal and probably could 
be caused by reduced N availability3. A comprehensive synthesis of 
data on responses of plant productivity and N acquisition to elevated 
CO2 in free-air carbon dioxide enrichment (FACE) experiments 
demonstrated that there were declines in N uptake in low-N eco-
systems as a result of decreased ‘access’ to N, not reduced demand4. 
The growth dilution hypothesis was ‘refuted’ as an explanation for 
these declines4.

There are many reasons that the isotopic signature of deposited 
N is unlikely to be causing the declines in plant δ15N. Although  
our analysis of foliar δ15N was limited to after 1980, declines in 
foliar, tree-ring and sediment δ15N (refs. 5,6,7) pre-date the onset  
of widespread inorganic N fertilizer use, as well as any timing of 
shifts to more reduced forms of N in deposition that Hiltbrunner 
et  al. posit. Also, despite variation in the isotopic signatures of  
N deposition and its sources8, there is no evidence currently that 
the signature of atmospheric N deposition has been declining over 
time. A global, comprehensive dataset on the signature of N deposi-
tion does not exist and would be helpful to generate. Yet, even if the 
isotopic signature of N deposition has been declining, changes in 
N availability can have a stronger influence on plant δ15N than the 
signature of added N (ref. 9).

In asserting the importance of N deposition globally, Hiltbrunner 
et  al. ignore or misrepresent the literature that supports the use 
of [N] and plant δ15N as proxies for N availability and the con-
sequences of elevated CO2 on the N cycle. For example, multiple 
studies show positive relationships between soil N availability and 
δ15N (ref. 10), which is central to the use of δ15N as a proxy for N 
availability. In addition, the authors characterize the global decline 
in foliar δ15N of 0.6–1.6‰ as ‘minute’, yet the typical N availability  

gradient that ecologists measure in studies averages only 3.6‰  
(ref. 10). Our observation of declining δ15N and its link to elevated 
CO2 also matches the long-known observation that elevated CO2 
typically decreases foliar δ15N (refs. 11,12).

Overall, evidence of declining N availability in unfertilized  
terrestrial ecosystems continues to accumulate and extends 
beyond plant N concentrations and δ15N (refs. 13–21). We agree 
with Hiltbrunner et al. that the N cycle is complex, but complex-
ity does not preclude the principles of parsimony. The declines in 
foliar [N] and δ15N at the global scale are consistent with expecta-
tions of declining N availability. Declining N availability is the most 
parsimonious explanation for global declines in foliar [N] and δ15N 
(Fig. 1). Most evidence supports widespread global terrestrial oligo-
trophication, not eutrophication, in the least anthropogenically  
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Fig. 1 | Parsimony diagram representing the relative evidence for different 
explanations behind declines in foliar [N] and δ15N. Results from elevated 
CO2 experiments reduce the likelihood of declines in foliar [N] being 
caused by growth dilution. The timing of reduction in plant δ15N from  
paleo-reconstructions is the main reason to downweight the role of a 
depositional (dep) signature. Declining N availability remains the most 
parsimonious explanation for global declines in foliar [N] and δ15N.
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affected regions, probably as a result of elevated atmospheric CO2 
and/or increased growing season length. We currently have no 
contemporaneous global maps of foliar [N], long-term records 
of soil N availability are rare, tree-ring and herbarium records of 
foliar [N] and δ15N are not comprehensive and are largely restricted  
to Europe and North America, and global maps of the isotopic  
signature of N deposition do not exist. These gaps need to be  
filled if we are to better understand the pattern of global changes  
in N availability.
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