Reply to: Data do not support large-scale oligotrophication of terrestrial ecosystems

Joseph M. Craine^{1*}, Andrew J. Elmore², Lixin Wang³, Pascal Boeckx⁴, Sylvain Delzon⁵, Yunting Fang⁶, Alan Gray⁷, Rossella Guerrieri⁸, Michael J. Gundale⁹, Peter Hietz¹⁰, David M. Nelson², Pablo L. Peri¹¹, Pamela H. Templer¹² and Christiane Werner¹³

REPLYING TO Hiltbrunner, E., Körner, C., Meier, R., Braun, S. & Kahmen, A. Nature Ecology & Evolution https://doi.org/10.1038/s41559-019-0948-5 (2019).

Hiltbrunner et al.¹ apply a reductionist approach to argue that the evidence for widespread terrestrial oligotrophication² should be replaced with a two-factor explanation (growth dilution and depositional signatures) that does not invoke reductions in N availability, that is, the supply of N relative to plant demand. Contrary to any "adjustment of leaf photosynthetic capacity and a widening of leaf C:N ratios," there is little evidence that observed declines in foliar [N] are caused solely by photosynthetic downregulation. Photosynthetic downregulation is not universal and probably could be caused by reduced N availability³. A comprehensive synthesis of data on responses of plant productivity and N acquisition to elevated CO₂ in free-air carbon dioxide enrichment (FACE) experiments demonstrated that there were declines in N uptake in low-N ecosystems as a result of decreased 'access' to N, not reduced demand⁴. The growth dilution hypothesis was 'refuted' as an explanation for these declines⁴.

There are many reasons that the isotopic signature of deposited N is unlikely to be causing the declines in plant δ^{15} N. Although our analysis of foliar δ^{15} N was limited to after 1980, declines in foliar, tree-ring and sediment δ^{15} N (refs. ^{5,6,7}) pre-date the onset of widespread inorganic N fertilizer use, as well as any timing of shifts to more reduced forms of N in deposition that Hiltbrunner et al. posit. Also, despite variation in the isotopic signatures of N deposition and its sources⁸, there is no evidence currently that the signature of atmospheric N deposition has been declining over time. A global, comprehensive dataset on the signature of N deposition does not exist and would be helpful to generate. Yet, even if the isotopic signature of N deposition has been declining, changes in N availability can have a stronger influence on plant δ^{15} N than the signature of added N (ref. ⁹).

In asserting the importance of N deposition globally, Hiltbrunner et al. ignore or misrepresent the literature that supports the use of [N] and plant δ^{15} N as proxies for N availability and the consequences of elevated CO₂ on the N cycle. For example, multiple studies show positive relationships between soil N availability and δ^{15} N (ref. ¹⁰), which is central to the use of δ^{15} N as a proxy for N availability. In addition, the authors characterize the global decline in foliar δ^{15} N of 0.6–1.6‰ as 'minute', yet the typical N availability

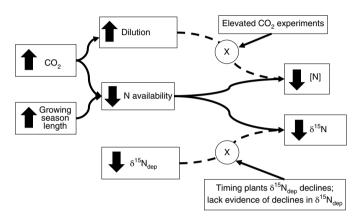


Fig. 1 | Parsimony diagram representing the relative evidence for different explanations behind declines in foliar [N] and δ^{15} N. Results from elevated CO₂ experiments reduce the likelihood of declines in foliar [N] being caused by growth dilution. The timing of reduction in plant δ^{15} N from paleo-reconstructions is the main reason to downweight the role of a depositional (dep) signature. Declining N availability remains the most parsimonious explanation for global declines in foliar [N] and δ^{15} N.

gradient that ecologists measure in studies averages only 3.6% (ref. ¹⁰). Our observation of declining $\delta^{15}N$ and its link to elevated CO₂ also matches the long-known observation that elevated CO₂ typically decreases foliar $\delta^{15}N$ (refs. ^{11,12}).

Overall, evidence of declining N availability in unfertilized terrestrial ecosystems continues to accumulate and extends beyond plant N concentrations and δ^{15} N (refs. ^{13–21}). We agree with Hiltbrunner et al. that the N cycle is complex, but complexity does not preclude the principles of parsimony. The declines in foliar [N] and δ^{15} N at the global scale are consistent with expectations of declining N availability. Declining N availability is the most parsimonious explanation for global declines in foliar [N] and δ^{15} N (Fig. 1). Most evidence supports widespread global terrestrial oligotrophication, not eutrophication, in the least anthropogenically

¹Jonah Ventures, Boulder, CO, USA. ²Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA. ³Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA. ⁴MB Isotope Bioscience Laboratory, Ghent University, Ghent, Belgium. ⁵BIOGECO, INRA, University of Bordeaux, Pessac, France. ⁶CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China. ⁷NERC Centre for Ecology and Hydrology, Midlothian, UK. ⁸Centre for Ecological Research and Forestry Applications, Barcelona, Spain. ⁹Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden. ¹⁰Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria. ¹¹Universidad Nacional de la Patagonia Austral, Instituto Nacional de Tecnología Agropecuaria, CONICET, Santa Cruz, Argentina. ¹²Department of Biology, Boston University, Boston, MA, USA. ¹³Ecosystem Physiology, University of Freiburg, Freiburg, Germany. *e-mail: josephmcraine@gmail.com

MATTERS ARISING

affected regions, probably as a result of elevated atmospheric CO₂ and/or increased growing season length. We currently have no contemporaneous global maps of foliar [N], long-term records of soil N availability are rare, tree-ring and herbarium records of foliar [N] and δ^{15} N are not comprehensive and are largely restricted to Europe and North America, and global maps of the isotopic signature of N deposition do not exist. These gaps need to be filled if we are to better understand the pattern of global changes in N availability.

Received: 10 May 2019; Accepted: 18 June 2019; Published online: 22 July 2019

References

- Hiltbrunner, E., Körner, C., Meier, R., Braun, S. & Kahmen, A. Data do not support large-scale oligotrophication of terrestrial ecosystems. *Nat. Ecol. Evol.* https://doi.org/10.1038/s41559-019-0948-5 (2019).
- Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. *Nat. Ecol. Evol.* 2, 1735–1744 (2018).
- 3. Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *Bioscience* 54, 731–739 (2004).
- 4. Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO₂. *Glob. Change Biol.* **21**, 3152–3168 (2015).
- 5. McLauchlan, K. K. et al. Centennial-scale reductions in nitrogen availability in temperate forests of the United States. *Sci. Rep.* **7**, 7856 (2017).
- Holtgrieve, G. W. et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. *Science* 334, 1545–1548 (2011).
- McLauchlan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W. & Craine, J. M. Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands. *New Phytol.* 187, 1135–1145 (2010).
- Elliott, E. M., Yu, Z., Cole, A. S. & Coughlin, J. G. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing. *Sci. Total Environ.* 662, 393–403 (2019).
- Hogberg, P. Development of nitrogen-15 enrichment in a nitrogen-fertilized forest soil-plant system. Soil Biol. Biochem. 23, 335–338 (1991).
- 10. Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. *Plant Soil* **396**, 1–26 (2015).

NATURE ECOLOGY & EVOLUTION

- BassiriRad, H. et al. Widespread foliage delta N-15 depletion under elevated CO₂: inferences for the nitrogen cycle. *Glob. Change Biol.* 9, 1582–1590 (2003).
- Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO₂ enhancement of forest productivity constrained by limited nitrogen availability. *Proc. Natl Acad. Sci. USA* **107**, 19368–19373 (2010).
- 13. Groffman, P. M. et al. Nitrogen oligotrophication in northern hardwood forests. *Biogeochemistry* 141, 523-539 (2018).
- Craine, J. M., Elmore, A. & Angerer, J. P. Long-term declines in dietary nutritional quality for North American cattle. *Environ. Res. Lett.* 12, 044019 (2017).
- Ziska, L. H. et al. Rising atmospheric CO₂ is reducing the protein concentration of a floral pollen source essential for North American bees. *Proc. R. Soc. B* 283, 20160414 (2016).
- Gruneberg, E., Ziche, D. & Wellbrock, N. Organic carbon stocks and sequestration rates of forest soils in Germany. *Glob. Change Biol.* 20, 2644–2662 (2014).
- 17. Durán, J. et al. Climate change decreases nitrogen pools and mineralization rates in northern hardwood forests. *Ecosphere* 7, e01251 (2016).
- Eshleman, K. N., Sabo, R. D. & Kline, K. M. Surface water quality is improving due to declining atmospheric N deposition. *Environ. Sci. Technol.* 47, 12193–12200 (2013).
- Sabo, R. D. et al. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition. *Atmos. Environ.* 146, 271–279 (2016).
- Lucas, R. W. et al. Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change. *Ecol. Appl.* 26, 545–556 (2016).
- 21. Bernal, S., Hedin, L. O., Likens, G. E., Gerber, S. & Buso, D. C. Complex response of the forest nitrogen cycle to climate change. *Proc. Natl Acad. Sci. USA* **109**, 3406–3411 (2012).

Competing interests

The authors declare no competing interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to J.M.C.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019