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50 mg g–1 in irrigated saplings. In non-irrigated saplings, the 
value was 34 mg g–1 at T0, whereas it was 49 mg g–1 and 97 mg 
g–1 at T+Day and T+Night, respectively. From DOY 139 to 
DOY 181, an increase was observed in the total NSCs, with 
values ranging from 100 mg g–1 to 200 mg g–1 in all treat-
ments. Two weeks after re-watering (DOY 196), a synchro-
nous and drastic drop in NSCs was found in all treatments. 
On DOY 209, the total NSCs in cambium were again high, 

with mean values ranging from 150 mg g–1 to 200 mg g–1, and 
then decreased gradually at the end of  September (Fig. 6). 
In the xylem, total NSCs changed in a similar manner dur-
ing the growing season in all treatments (Fig.  6). Similar 
concentrations were observed at the beginning and end of 
the experiment, with higher amounts observed on DOY 195 
for all thermal conditions, except in non-irrigated saplings 
for T0.

Fig. 3.  Pre-dawn leaf water potential (Ψpd; MPa), midday leaf water potential (Ψmd; MPa), CO2 assimilation (maximum photosynthesis rate, Amax; μmol 
m–2 s–1), and gas exchange (stomatal conductance, gs; mol m–2 s–1) of black spruce saplings before, during, and after the water deficit period (WDp) 
under the three thermal conditions during the greenhouse experiment in 2011.
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At the beginning of the experiment, similar amounts of 
starch were observed in the irrigation regimes (Fig. 6). Starch 
reached its maximum values on DOY 118 and 139 (ranging 

from 4 mg g–1 to 6 mg g–1), and dropped to zero at the end 
of water deficit (DOY 181)  under all thermal conditions 
(Fig.  6). After re-watering, starch showed a similar pattern 
among the irrigation regimes, ranging from 0.24 mg g–1 to 
0.23 mg g–1. However, a slower increase was observed after 
the summer minimum under warmer conditions, with a lower 
concentration in T+Day (0.47 mg g–1) and T+Night (0.48 mg 
g–1) compared with T0 (0.62 mg g–1). A significant difference 
was found in the starch concentration between temperature 
treatments, whereas no difference was found between irriga-
tion regimes and their interaction (Supplementary Table S1 
at JXB online).

Fig. 4.  Mean percentage loss of hydraulic conductance (PLC%) versus 
xylem pressure (MPa) for black spruce saplings The vulnerability curve was 
obtained with the cavitron technique.

Fig. 5.  Cell features and wood density of the tracheids produced by irrigated (black curves) and non-irrigated (grey curves) black spruce saplings under 
three thermal conditions (T0, control temperature; T+Day, temperature increase during the day; T+Night, temperature increase during the night) along 
portions of an annual tree ring.

Table 2.  Mean values and SD of xylem pressure inducing 50% loss 
in conductance (P50), xylem air entry point (P12), and vulnerability 
curve slope of the stem measured on black spruce saplings

Parameters Picea mariana sapling

Irrigated

P50 (MPa) –4.27 ± 0.1
P12 (MPa) –2.95 ± 0.05
Slope (% MPa–1) 41.72 ± 16.70
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Table 3.  Wood properties (mean and SD) of black spruce saplings at three thermal conditions during the greenhouse experiment in 
2011)

Irrigation regimes T0 T+Day T+Night

Wood density (kg m–3)
Mean Non-irrigated 638 ± 86 598 ± 79 621 ± 99

Irrigated 650 ± 79 657 ± 79 676 ± 95
Minimum Non-irrigated 481 ± 90 435 ± 61 470 ± 73

Irrigated 438 ± 59 478 ± 86 478 ± 96
Maximum Non-irrigated 954 ± 153 917 ± 141 936 ± 145

Irrigated 991 ± 120 985 ± 109 982 ± 100
Earlywood Non-irrigated 566 ± 87 541 ± 60 577 ± 88

Irrigated 540 ± 52 598 ± 80 590 ± 99
Latewood Non-irrigated 832 ± 125 785 ± 146 811 ± 121

Irrigated 850 ± 108 844 ± 104 825 ± 99
Ring width (mm)
Earlywood Non-irrigated 0.56 ± 0.2 0.59 ± 0.2 0.71 ± 0.3

Irrigated 0.64 ± 0.2 0.81 ± 0.2 0.59 ± 0.2
Latewood Non-irrigated 0.22 ± 0.2 0.23 ± 0.2 0.15 ± 0.1

Irrigated 0.33 ± 0.1 0.28 ± 0.2 0.33 ± 0.2
Proportion (%)
%Earlywood Non-irrigated 71.8 73.6 70.8

Irrigated 60.5 74.0 68.8
%Latewood Non-irrigated 28.2 26.4 29.2

Irrigated 39.5 26.0 31.2

Significant effects between irrigation regimes (P≤0.05) are in bold.

Table 4.  P values for wood density, cell-wall thickness, and lumen area along relative portion of tree ring (%) in black spruce saplings 
calculated between irrigation regimes ( I), among thermal conditions ( T) and interaction between irrigation regimes and thermal 
conditions ( I × T)

Relative portion of tree ring (%) Lumen area Cell-wall thickness Wood density

I T I × T I T I × T I T I × T

5 0.0734 0.0125 0.0086 0.0180 0.6222 0.9311 0.863 0.2488 0.9572
10 0.1833 <.0001 0.0368 0.0201 0.0227 0.9393 0.6981 0.569 0.5622
15 0.0374 <.0001 0.0005 0.0041 0.0012 0.2776 0.7275 0.6738 0.3188
20 <.0001 <.0001 <.0001 0.0003 0.0005 0.2431 0.7871 0.5327 0.2653
25 0.0370 <.0001 <.0001 <.0001 0.0044 0.1173 0.8825 0.3263 0.224
30 0.0162 <.0001 <.0001 <.0001 <.0001 0.0130 0.8295 0.1777 0.1457
35 0.6011 <.0001 0.0103 <.0001 <.0001 0.0152 0.5039 0.1032 0.1128
40 0.1043 0.0002 <.0001 <.0001 0.0065 0.0155 0.2266 0.0798 0.1274
45 0.8612 0.0193 <.0001 <.0001 0.0022 0.1574 0.0641 0.131 0.1314
50 0.0132 0.5606 <.0001 <.0001 <.0001 0.5906 0.0148 0.3645 0.1224
55 <.0001 0.0007 0.0021 <.0001 <.0001 0.0151 0.0048 0.666 0.1765
60 <.0001 0.0008 <.0001 <.0001 <.0001 0.0005 0.0035 0.5406 0.3595
65 0.0076 <.0001 0.0119 <.0001 <.0001 <.0001 0.0038 0.3249 0.6323
70 0.0761 <.0001 <.0001 <.0001 <.0001 <.0001 0.0053 0.2262 0.7925
75 0.118 <.0001 <.0001 0.0202 <.0001 <.0001 0.0076 0.1696 0.7991
80 0.1289 <.0001 <.0001 0.0247 <.0001 <.0001 0.0134 0.1391 0.8223
85 0.9564 <.0001 <.0001 0.0157 <.0001 <.0001 0.0281 0.1453 0.924
90 0.0207 <.0001 <.0001 0.0643 <.0001 0.0018 0.0569 0.2142 0.9931
95 0.6998 <.0001 <.0001 0.0453 0.0033 0.7037 0.0987 0.4413 0.9516
100 0.0268 <.0001 <.0001 0.3345 0.0076 0.0023 0.0987 0.8289 0.8944

Significant effects (P≤0.05) are in bold.
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Discussion

Mechanisms of sapling survival

An increase in air temperature in conjunction with 25 d of 
water deficit induced a significant increase in sapling mortal-
ity (~10% in T+Night and 20% in T+Day). Mortality per-
sisted as long as 3 weeks after the resumption of irrigation, 
especially at higher night-time temperature. The observations 
were in agreement with the mortality observed in 3-year-old 
black spruce seedlings on regenerated cutover (Ruel et  al., 
1995). Previous research showed that juvenile mortality in 
black spruce ranged from 10% to 21% according to stem 
height and the presence of stem wounds, as the root system 
cannot withstand drought (Ruel et al., 1995). Another study 
observed that warmer temperatures during growth triggered a 
higher percentage of mortality in black spruce seedlings with 
consequent growth compensation (Way and Sage, 2008b). 
During the water deficit, stomatal conductance and CO2 
assimilation in non-irrigated saplings were lower compared 

with irrigated saplings at high temperature, as found by Way 
and Sage (2008a).

During water stress, stomatal conductance was strongly 
reduced when leaf Ψpd ranged from –1.0 MPa to –1.5 MPa 
(Bernier, 1993; Stewart et al., 1994), and damage to the root 
system of black spruce was observed when Ψpd reached 
–2.5 MPa (Johnsen and Major, 1999). The results showed that 
a higher percentage of mortality occurred in T+Day when 
Ψpd reached a level of –1.6 MPa and Ψmin md was –1.97 MPa. 
The mortality was lower in T+Night, even when Ψmin pd 
reached –2.8 MPa and Ψmd –2.38 MPa. However, it was more 
persistent in T+Night, with 1.78% observed 3 weeks after 
re-watering. The physiological mechanisms involved in tree 
mortality occur at different time scales (Anderegg et al., 2012) 
and are linked to species-specific vulnerability to cavitation 
(Delzon et al., 2010). In trees, Ψmin is a relevant parameter to 
understand stem xylem cavitation and to define the thresh-
olds of hydraulic failure (Brodribb et  al., 2010; Urli et  al., 
2013). In the present findings, the minimum leaf water poten-
tial reached values close to –3 MPa that probably induced 

Fig. 6.  Non-structural carbohydrates (NSCs) in mg gdw
–1 in cambium and in xylem, and starch concentration in xylem (mg gdw

–1) in black spruce saplings 
before, during, and after the water deficit period (grey background) under three thermal conditions (T0, control temperature; T+Day, 6 °C higher daytime 
temperature; T+Night, 6 °C higher night-time temperature). Filled and open white circles indicate the two irrigation regimes. Asterisks indicate statistically 
significant differences between the two irrigation regimes (Wilcoxon test; P≤0.05).
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xylem embolism (xylem air entry pressure, P12, being on aver-
age around –3 MPa for this species). Moreover, in view of the 
standard deviation of both P12 and P50, it is possible that some 
individuals even reached their lethal cavitation threshold, 
explaining the mortality rate observed in the experiment. In 
sapling stems, the xylem tension inducing 50% loss of conduc-
tivity (P50) was –4.26 MPa on average. Taken together, these 
results suggest that the saplings had a narrow safety margin 
under drought conditions and thus a high risk of hydraulic 
failure (Choat et al., 2012). This result is in line with recent 
studies reporting that daily cycles of cavitation and successive 
repair are not habitual events for trees (Cochard and Delzon, 
2013; Sperry, 2013; Wheeler et al., 2013), as cavitation might 
only occur under severe drought (Delzon and Cochard, 2014). 
On the basis of the present results, it was considered that the 
hydraulic functionality of xylem would not be completely or 
irreversibly compromised for control saplings. However, the 
results were based on the response of a limited number of 
saplings, and dead individuals were not considered. In addi-
tion, the increase in mortality in non-irrigated saplings could 
be explained by a reduction in leaf hydraulic conductivity at 
warmer temperature. Indeed, during the post-drought period, 
saplings had dramatically lower rates of photosynthesis and 
stomatal conductance than those of pre-stress saplings and 
controls. This slow recovery phase might be due to a loss in 
leaf hydraulic conductivity associated with xylem cavitation. 
This could explain significantly the death of conifer saplings, 
as reported in Brodribb and Cochard (2009).

The higher mortality rate under warmer conditions could 
be due to temperature sensitivity when incomplete restoration 
of carbon reserves was reached, as observed in recent studies 
on conifers (Sala et al., 2012; Adams et al., 2013; Hartmann 
et al., 2013). During water deficit, leaf parameters gs and Amax 
declined to zero under all thermal conditions. A decrease in 
the maximum photosynthetic rate could normally be associ-
ated with a negative carbon gain, meaning that less sucrose 
would be translocated in the phloem and unloaded in cam-
bium. However, NSC concentrations in both cambium and 
xylem were similar between the irrigated and non-irrigated 
saplings. The intra-annual pattern of NSC showed an inverse 
trend in the soluble sugar content between cambium (decline) 
and xylem (increase) around DOY 160 when starch in the 
xylem was near zero, suggesting the presence of strong sea-
sonal dynamics, as observed in other conifers (Schaberg et al., 
2000; Gruber et al., 2012). This seasonal scenario was often 
reported in spring and winter when starch to sugar conversion 
occurs (Schaberg et al., 2000; Bucci et al., 2003). The slower 
replenishment in starch reserves observed under warming, for 
both irrigated and non-irrigated saplings, could suggest an 
active role for starch, not only for the allocation of carbon 
resources for growth and metabolic demands, but also for the 
recovery of plants after drought.

It is hypothesized that the higher percentage of mortal-
ity at higher daytime and night-time temperatures, as well 
as the prolonged mortality at T+Night, could be related to 
the lower starch reserves after their seasonal minimum. The 
lower starch amount could be caused by a lower accumula-
tion in the xylem due to a decrease in photosynthesis induced 

by water deficit. It is thought that the day and night daily fluc-
tuation of starch in the stem could be analogous to that in the 
leaves. Thus, the lower recovery of starch in the xylem could 
reflect a change in the partitioning during the day and night. 
Reduction of carbon storage in the stem could be caused by 
(i) diminution of the fraction of carbon stored for later use 
or (ii) immediate use required to meet the higher metabolic 
demand at higher temperature. The co-occurrence of abi-
otic stresses thus limits the pools of stored carbon, possibly 
from lower sugar translocation by the phloem (Galiano et al., 
2011; Woodruff and Meinzer, 2011; Sala et al., 2012). Recent 
research showed that under moderate drought, plant water 
conditions required for carbon remobilization sustained the 
survival of saplings, while severe drought strongly reduced 
the ability of saplings to utilize starch reserves, which did 
not ensure sapling survival (Hartmann et  al., 2013). Even 
if  the present study is limited and precludes information on 
the NSC and starch pattern in other sink tissues (roots and 
leaves), the carbon starvation hypothesis cannot be invoked.

Does the modification in wood anatomy make plants 
more resistant?

Under warmer conditions, xylem anatomy was modified by 
water deficit. Drought can induce the development of LW 
cells in EW, which is a typical reaction in species growing 
in the Mediterranean area (Cherubini et  al., 2003; de Luis 
et al., 2011). In this study, however, at warmer temperatures, 
the observed plateau of cell wall thickness could represent 
the incapacity of black spruce to allocate sufficient car-
bon resource to build thicker cell walls. Moreover, a higher 
decrease (or lower plateau) was observed in non-irrigated 
saplings, clearly indicating a lower carbon allocation to cell 
wall development. The effect was also amplified as the water 
deficit occurred during the period of maximum cell produc-
tion and differentiation. The co-occurrence of drought and 
warming that limited photosynthetic acclimation, with a con-
sequent reduction in carbon (Way and Sage, 2008b), could 
influence the synthesis of cell wall components and produce 
thin cell walls (Luomala et  al., 2005). The most important 
consequence of such combined stress effects was the forma-
tion of wood with a lower density, which generally reflects a 
high hydraulic conductivity (Bucci et  al., 2004). This strat-
egy does not allow the adaptation of black spruce toward 
a more efficient hydraulic system but probably decreases 
plant survival under warming and drought stress. Wood 
density is strongly correlated to drought-induced embolism 
(Pittermann et  al., 2006; Hoffmann et  al., 2011), because 
a low hydraulic conductivity may be an element of great 
drought resistance (Hacke et al., 2001), but the relationship 
between wood density and resistance to cavitation is not 
direct. A lower wood density was recently proposed as a strat-
egy to avoid catastrophic embolism after severe water deficit 
(Hoffmann et al., 2011; Rosner et al., 2014). The lower wood 
density could be caused by a change in the carbon allocation 
as (i) more carbon is required to meet the higher respiration 
demand at higher temperature, especially during the night 
(Amthor, 2000); and (ii) the carbon resources are mobilized 
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for osmoregulation and are not available for cell wall building 
(Muller et al., 2011; Pantin et al., 2012).

Conclusion

This experiment emphasizes the importance of investigat-
ing sapling responses to multifactor stress in order to reveal 
the effects on individual survival and xylem performance. 
The findings showed that the recovery of gas exchange never 
reached the initial pre-stress levels, indicating a loss in xylem 
hydraulic conductivity compared with pre-stress levels that 
could explain the hydraulic failure and death of individu-
als under warmer conditions. The consequences of drought 
under warming can improve our understanding of the role 
of wood density and carbon storage for sapling survival. This 
study underlined the importance of considering the active 
role of carbon storage and its utilization during tree growth 
under harsh environmental conditions. Although depletion 
of carbon reserves did not take place during prolonged water 
deficit, the carbon–water relationships changed and were 
important for the survival process in saplings.

Supplementary data

Supplementary data are available at JXB online.
Figure S1. Sampling timetable of black spruce saplings.
Table S1. Means and P-values for total non-structural 

carbohydrates (NSCs) in cambium and in xylem and starch 
in xylem in black spruce saplings calculated between irriga-
tion regimes and among thermal conditions, and interaction 
between irrigation regimes and thermal conditions
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