
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from
SPOT/VEGETATION time-series

Dominique Guyon a,⁎, Marie Guillot a, Yann Vitasse b,c, Hervé Cardot d, Olivier Hagolle e,
Sylvain Delzon b,c, Jean-Pierre Wigneron a

a INRA, UR1263 EPHYSE, F-33140 Villenave d'Ornon, France
b INRA, UMR BIOGECO, F-33610 Cestas, France
c Université de Bordeaux, UMR BIOGECO, Av. des Facultés, F-33405 Talence, France
d Université de Bourgogne, CNRS, UMR 5584, Institut de Mathématiques de Bourgogne, BP 47870, F-21078 Dijon, France
e CESBIO, Unité mixte CNES CNRS IRD UPS, 18 avenue E. Belin, F-31401 Toulouse Cedex 9, France

a b s t r a c ta r t i c l e i n f o

Article history:
Received 9 January 2010
Received in revised form 12 October 2010
Accepted 16 October 2010

Keywords:
Phenology
Leaf unfolding
Deciduous forest
Elevation
VEGETATION
Perpendicular vegetation index
Temporal unmixing

In mountain forest ecosystems where elevation gradients are prominent, temperature gradient-based
phenological variability can be high. However, there are few studies that assess the capability of remote
sensing observations to monitor ecosystem phenology along elevation gradients, despite their relevance
under climate change. We investigated the potential of medium resolution remotely sensed data to monitor
the elevation variations in the seasonal dynamics of a temperate deciduous broadleaf forested ecosystem.
Further, we explored the impact of elevation on the onset of spring leafing. This study was based on the
analysis of multi-annual time-series of VEGETATION data acquired over the French Pyrenees Mountain Region
(FPMR), in conjunction with simultaneous ground-based observations of leaf phenology made for two
dominant tree species in the region (oak and beech). The seasonal variations in the perpendicular vegetation
index (PVI) were analyzed during a five-year period (2002 to 2006). The five years of data were averaged into
a one sole year in order to fill the numerous large spatio-temporal gaps due to cloud and snow presence –

frequent in mountains –without altering the temporal resolution. Since a VEGETATION pixel (1 km²) includes
several types of land cover, the broadleaf forest-specific seasonal dynamics of PVI was reconstructed pixel-by-
pixel using a temporal unmixing method based on a non-parametric statistical approach. The spatial pattern
of the seasonal response of PVI was clearly consistent with the relief. Nevertheless the elevational or
geographic range of tree species, which differ in their phenology sensitivity to temperature, also has a
significant impact on this pattern. The reduction in the growing season length with elevation was clearly
observable from the delay in the increase of PVI in spring and from the advance of its decrease in the fall. The
elevation variations in leaf flushing timing were estimated from the temporal change in PVI in spring over the
study area. They were found to be consistent with those measured in situ (R2N0.95). It was deduced that, over
FPMR, the mean delay of leaf flushing timing for every 100 m increase in elevation was estimated be
approximately 2.3 days. The expected estimation error of satellite-based leaf unfolding date for a given
elevation was approximately 2 days. This accuracy can be considered as satisfactory since it would allow us to
detect changes in leafing timing of deciduous broadleaf forests with a magnitude equivalent to that due to an
elevation variation of 100 m (2.3 days on average), or in other words, to that caused by a variation in themean
annual air temperature of 0.5 °C. Although averaging the VEGETATION data over five years led to a loss of
interannual information, it was found to be a robust approach to characterise the elevation variations in
spring leafing and its long-term trends.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Vegetation phenology namely the timing of the plant activity as
influenced by the environment seasonality is a relevant indicator of

the response of terrestrial ecosystems to global warming (Cleland
et al., 2007). Many studies have documented the phenological changes
observed across the northern hemisphere in recent decades (see the
review paper of Cleland et al., 2007). Earlier spring events (leafing,
flowering) and longer growing seasons are some of the most
significant changes in the vegetation seasonal cycle in the boreal and
temperate zones. Analyses of long-term in situ observations have
demonstrated the clear advancement of the start of spring at species
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level (e.g. for Europe: Menzel & Fabian, 1999; Menzel et al., 2006).
Satellite-based observations have revealed the shifts in leaf phenology
of ecosystems at global scale (Myneni et al., 1997; Zhou et al., 2001).

Retrospective approaches are crucial to quantify the phenological
shifts and to link them to climate change. Remote sensing time-series
data offering an extensive coverage of land surfaces complement the
long-term records provided by ground observation networks and
historical reconstructions (Rutishauser et al., 2007), although their
temporal coverage spans only the most recent 30 years.

The use of daily data at medium spatial resolution provided by
satellite sensors such as AVHRR, MODIS or VEGETATION to investigate
the timing of vegetation green-up (Beck et al., 2006; Delbart et al.,
2006; Fisher et al., 2006; Maignan et al., 2008; Soudani et al., 2008;
Zhang et al., 2003), and its interannual changes or its long-term trends
(Delbart et al., 2006; Maignan et al., 2008; Myneni et al., 1997; Stöckli
& Vidale, 2004; Zhou et al., 2001) on large extents has been widely
developed during the last decade. These numerous studies benefited
from substantial improvements in the reconstruction of land surface
reflectance time-series, in particular due to the recent advances in
filtering of cloudy or snowy pixels, correction of atmospheric
disturbances and normalisation of directional effects (Bacour et al.,
2006; Hagolle et al., 2005) and also to the launch of new sensors of
higher quality (Badeck et al., 2004) in geometry and radiometry. The
timing of phenology of forest ecosystems from remote sensing is
commonly based on the analysis of the seasonal trajectory of
vegetation indices (e.g. NDVI) pixel-by-pixel. The onset and the end
of the growing season are identified from the increase of vegetation
index in spring and its decrease in autumnwith time. For this purpose
the seasonal variations in vegetation index are modelled. Several
approaches are possible. Non-parametric methods with various
temporal or spatio-temporal interpolation algorithms have been
developed (Beck et al., 2006; Maignan et al., 2008; Stöckli & Vidale,
2004). Statistical fitting of predefined curves (e.g. double logistic
function) has also been used with the assumption that the vegetation
dynamics is known a priori, ignoring the effects of disturbance (Fisher
et al., 2006; Zhang et al., 2003). The timing of phenological transitions
is then inferred either by thresholding the modelled vegetation index
at a predefined value (Delbart et al., 2006; Maignan et al., 2008) or by
using some parameters of the fitted parametric functions (Beck et al.,
2006; Fisher et al., 2006; Soudani et al., 2008; Zhang et al., 2003) such
as the inflection points.

The coarse spatial resolution of the most commonly used datasets –
8 km for AVHRR or 1 km for MODIS and VEGETATION – is relevant to
relate the phenology global patterns to climate warming, as shown by
thestudies applied to globalor continental scales on large latitude ranges
(Delbart et al.. 2006; Maignan et al., 2008; Myneni et al., 1997; Stöckli &
Vidale, 2004; Zhou et al., 2001). However, as a given pixel contains a
mixture of different species and land-cover types, it is not easy to clearly
extract the phenological response of a given type of vegetation (Badeck
et al., 2004). Also, Fisher et al. (2007) highlighted that, in deciduous
forests, the mixture of species differing in their phenological behaviour
makes it difficult to understand the link between satellite information
and temperature variability if the species composition is unknown. The
temporal unmixing is then a useful approach to downscale from the
medium resolution pixel to the local seasonal dynamics of each land-use
or vegetation type (Cardot et al., 2008).

Mountain forest ecosystems where the phenology variability can be
observed along the broad temperature gradient associated with the
large elevation gradient are particularly vulnerable to global warming.
Consequences can already be observed on the elevation range of species
(Bertin, 2008; Lenoir et al., 2008; Peñuelas & Boada, 2003). Species can
either adapt via their phenotype plasticity and/or their genetic diversity,
phenological changes reflecting the adaptative response of species, or
migrate to milder elevations. However distributional changes are likely
to bemuch slower than the phenological changes (Bertin, 2008). More-
over the climate forcing does not completely explain the observed

elevation shifts in plant species as there are some other confounding
factors such as changes in landmanagement (Peñuelas & Boada, 2003).

A few studies (e.g. Vitasse et al., 2009a,b) have investigated the
seasonal forest species dynamics along elevation gradients and papers
based on remote sensing are rare. Beck et al. (2008) presented the
gradation of the seasonal course of NDVI derived from MODIS time-
series depending on elevation in a mountainous area of China; with a
clear decrease in the duration of the green-up period over a 1500 m
gradient. Using high resolution data (Landsat TM at 30 m), Fisher et al.
(2006) have quantified the effect of the local topography on the
initiation of growing season. The too coarse resolution of global 8-km
AVHRR data did not allow Maignan et al. (2008) to capture the effect
of temperature variations on the onset of the growing season of
mountain forests in Switzerland because of the high within-pixel
heterogeneity in elevation and vegetation.

In this paper, we investigated the potential of medium resolution
remote sensing to monitor the elevation variations in the seasonal
dynamics of temperate deciduous broadleaf forests and to estimate
the impact of the elevation on the spring leafing timing of deciduous
species. This study is based on a multi-annual time-series of
VEGETATION data (2002 to 2006) acquired over an area with large
elevation gradients in the French Pyrenees mountains region.
Although the spatial resolution (1-km) of this dataset is coarser
than that of someMODIS land products (250 and 500 m), we chose to
use the VEGETATION observations for the following reasons. Firstly,
VEGETATION observations were corrected for the directional effects,
which was not the case for the MODIS reflectance products available
at the finest resolution (250 m). Secondly, the temporal frequency of
the reconstructed reflectance time-series is larger (three times a
month) than the one given by the MODIS nadir adjusted reflectance
products available at 500 m resolution (two times a month). An
unmixing technique was then applied to retrieve the pure seasonal
course of reflectance signal of the broadleaf forests pixel-by-pixel. The
analysis of the satellite time-series to retrieve the timing of leaf
unfolding was supported by the availability of simultaneous in situ
observations of phenology for the two main deciduous species in the
study area — oak and beech.

2. Materials and methods

2.1. Study area

The study was carried out in a 135 km×100 km area which covers
a large part of the Pyrenean region in South-West France between
longitudes 1.24°W to 0.25°E and latitudes 42.71°N to 43.61°N (Fig. 1).
This area is characterized by a temperate oceanic climate, with amean
annual temperature of 12 °C and a mean annual precipitation of
1079 mm (observations of Météo-France from 1946 to 2001 in Tarbes,
43°11′N, 00°00′W, 360 m asl (above sea level). The elevation varies
from 0 m asl in the plains in the North, to 3100 m in the Pyrenees
Mountains in the South. The upper elevation limit of broadleaf forests
is approximately 1800 m, whereas the tree line of coniferous and
mixed forests is approximately 2000 m. Oak (mainly sessile oak,
Quercus petraea) and beech (Fagus sylvatica) are the main deciduous
broadleaf species of the study area. Their distribution differs according
to elevation; oak occurs over elevations lower than beech as shown in
Fig. 2, even though it is still present at high elevation.

Geographical information on the elevation and the land use were
respectively derived from the Shuttle Radar Topography Mission
(USGS, 2005) and the European CLC2000 database (EEA, 2000).

2.2. Field phenological observations

We used the phenological data set measured by Vitasse et al.
(2009b) over the study area. The leaf unfolding of sessile oak and
beech was monitored at ground level over 22 sites during three
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consecutive years from 2005 to 2007. The sites were located in hilly
and mountain areas along two transects following two valleys: the
Ossau valley (Pyrénées Atlantiques) and the Gave valley (Hautes
Pyrénées). These were more or less parallel and at a distance of
approximately 30- to 50-km apart. Elevation increases from North to
South along each transect and the temperature lapse rate over the
elevation gradient was approximately 0.4 °C for every 100 m increase
in elevation (Vitasse et al., 2009a,b).

Both species were sampled in each transect at five elevation levels:
100 m, 400 m, 800 m, 1200 m and 1600 m above sea level (±50 m).
Four intermediate levels were added in the Gave valley for oak:
350 m, 600 m, 1000 m, and 1300 m. In this way 10 populations of
beech and 14 populations of sessile oak were selected. The timing of
leaf unfolding (LU) was monitored in situ every ten days over ten
dominant and mature trees sampled in each population. The exact
date of LU (LUD) of each tree sample was estimated by linear
interpolation between the measurement dates. At the population
level, LUD was calculated as the mean of the ten individual values.
Details on the spatial sampling of elevation and on the method used
for the phenological observations are given by Vitasse et al. (2009a,b).

Measurements of the elevation variations in LUD from 2005 to
2007 for oak and beech populations are given in Fig. 3a (Vitasse et al.,
2009a,b). Both species showed different elevation patterns of LUD and
LUD appears to be more sensitive to the elevation gradient for oak
than for beech (3.2 and 1 days.100 m−1, respectively). To simulate
the expected mean variations in deciduous forests LUD (LUDd)
depending on the elevation for the mean climatic conditions over the
three years, we combined the phenological patterns of the two species
(equations given in Fig. 3a) with a weighting corresponding to their
relative elevation distribution (given in Fig. 2). LUDd elevation
variations were found to be similar to the LUD elevation variations
of beech at an elevation greater than 900 m. At lower elevations LUDd
was delayed by 5 to 6 days in comparison with the LUD of pure oak

stands (Fig. 3b), even though its sensitivity to elevation gradient was
similar (the slope of LUD as function of elevation is approximately
3 days.100 m−1 in both cases). The mean delay of LUDd due to a
100 m elevation increase was approximately 2.3 days over the whole
elevation range. In this study, we will consider the curve of LUDd
(Fig. 3b) corresponds to the elevation pattern of LUD variations of
broadleaf forests by assuming that the latter were composed of only
oak and beech. With the same assumption, the mean LUD of broadleaf
forests (denoted as LUDREF) in 2005, 2006 and 2007 was approx-
imated by averaging LUDd as a function of elevation over the study
area, with a weighting by the elevation distribution of surface fraction
containing broadleaf forests derived from CLC2000 database. LUDREF

was equal to 105.5 (15 April).

Fig. 1. Location and elevation (asl, in meters) of the study area. White: mask over Spain.

Fig. 2. Elevation repartition of the deciduous broadleaf species: presence frequency of
oak versus beech, according to statistics provided by the French office of national forest
inventory (Inventaire Forestier National, IFN) from n=1052 ground observations.
Frequency of oak=1− frequency of beech.
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Fig. 3. Dates of the leaf unfolding of deciduous species observed at ground level in 2005,
2006 and 2007 as a function of elevation: (a) Observations for beech (Fagus sylvatica)
and oak (Quercus petraea) (Vitasse et al., 2009b), (b) Elevation patterns of the two
species and their weighted average (LUDd). DOY is day of the year.
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2.3. VEGETATION data

A multi-annual time-series of reflectance data was produced at
sampling intervals of 10 days for five years from 2002 to 2006, by
using daily data fromVEGETATION 1 and VEGETATION 2 instruments
on board SPOT-4 and SPOT-5 satellites. After the correction of the
sensors sensitivity drift and atmospheric effects, the compositing per
10-day period was performed including the elimination of cloudy or
snowy observations and the normalisation of directional effects. The
latter was performed with Roujean's model (Roujean et al., 1992),
which was fitted to non-cloudy and non-snowy observations
gathered over a time window of ±15 days from the middle of the
compositing interval. The core algorithm used is given in Hagolle
et al. (2005) and Baret et al. (2007). Finally, the 10-day data produced
was the top of canopy reflectance in each spectral band (red, near
infrared and shortwave infrared) normalised at view zenith
angle=0° and at sun zenith angle at 10:30 UT for the median day
of the ten-day compositing period. It was delivered under the lat–lon
projection at 1/112° spatial resolution (i.e. approximately 700 m×
1000 m) over the study area, whereas the native size of VEGETATION
pixels is 1 km ².

The minimal number of instantaneous VEGETATION data (NMOD)
used to estimate the 10-day reflectance was 3. As a consequence,
when NMOD was under this threshold the 10-day observation was
not provided. The combination of daily data coming from both sensors
VEGETATION 1 and VEGETATION 2 when available increased NMOD.
This was useful for improving the quality of the directional normal-
isation and for limiting the amount of missing data. The combination
of VEGETATION 1 and 2 images occurred only in 2003 for the whole
year, in 2002 after June 1, and in 2004 before April 1. VEGETATION 1,
exclusively, was used before June 1, 2002 while VEGETATION 2,
exclusively, was used after April 1, 2004. All yearly time-series were
incomplete except for 2003 due to the cloud or the snow cover during
winter and spring especially in mountains. Thus, the dataset includes
both spatial and temporal gaps. The gaps were the largest before and
during the leaf unfolding period and less marked during senescence.
For instance, over the whole study area there were no missing data
only for a small number of 10-day periods: 10 periods in 2002, 4 in
2003, 1 in 2004, 6 in 2005, and 3 in 2006. These 10-day periods only
occurred in July, August, September and October. These numerous
gaps in the time-series could lead to large errors in the detection of
the different phenology stages each year. For instance, Zhang et al.
(2009) showed that, using the 16-day MODIS products, two con-
secutive missing data during the phenophases of interest canmultiply
by 5 the risk of detection error larger than 5 days in comparison with
only one missing data. Some algorithms exist to fill spatio-temporal
gaps. But they are based on smoothing techniques (e.g. Gao et al.
2008) and in the case of large gaps they are not able to accurately
reconstitute the annual kinetics of the remote sensing signal and its
spatial variability. In addition, the algorithm we used for unmixing
this kinetics required the temporal continuity of the data. Therefore,
as our study was focused on the analysis of the elevation variations in
phenology and not on its interannual changes, we pooled the data
from the five years to build a sole mean year, assuming the interannual
variations in the vegetation seasonal dynamics during the five-year
period were lower than the variations due to changes in the elevation
over thewhole region. This later assumptionwas supported by the in situ
measurements obtained by Vitasse et al. (2009a,b) (Cf Fig. 3a for oak and
beech trees). A pixel was thus retained if its NMOD was larger than 2 at
least once during the five years (2002–2006) for each 10-day period. In
order to minimise the number of rejected pixels, the study period was
reduced; it was determined as March 11 to November 11, which spans
thewhole part of thepotential growing season.After this dataprocessing,
12686 pixels were selected. The removed pixels were mostly located at
an elevation greater than 1800 m corresponding to the tree line of
broadleaf forest.

The unmixing statistical model of Cardot et al. (2008) we used in
this study required the remote sensing response of the pixel to be a
linear combination of the responses of the sub-pixel components. The
ratio-based indices commonly used in phenology studies such as
NDVI (normalised vegetation index) or EVI (enhanced vegetation
index; Huete et al., 2002) are not compatible with this constraint.
Conversely, indices such as the DVI (Difference vegetation index) or
PVI (Perpendicular Vegetation Index) are linear indices (i.e. computed
from a linear combination of the measured reflectance observations)
and they contain more information about the vegetation dynamics
than the NDVI (higher Signal to Noise Ratio (Maignan et al. 2008), less
saturation problems (Huete et al. 2002), etc. ).We chose to use the PVI
index which has been designed to minimize its sensitivity to soil
reflectance (Richardson & Wiegand, 1977). The PVI is a linear
combination of the red (RED) and near infrared (NIR) reflectances:
PVI = NIR−aRED−bð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + a2

p
where a and b are respectively the

slope and the intercept of the soil line. The soil line equation was
approximated from a linear regression of the NIR reflectance as a
function of RED reflectance over non-vegetated surfaces. As too few
VEGETATION data were available over pure agricultural areas in
winterwhen the soil is bare, we used the observationsmade over pure
bare rock pixels in July and August. The linear regression was per-
formed on the 10-day reflectances after averaging the observations over
the 5 years. A significant linear relationship between NIR and RED
reflectanceswasobtained(n=312, r²=0.47, p-valueof t-statistics for the
parameters a and b was b0.0001), with a=0.757 (standard error=
0.023) and b=0.077 (0.002). It resulted that PVI = 0:797NIR−
0:604RED−0:06.

2.4. Unmixing of the seasonal variations in PVI

The unmixing methods were initially developed to estimate the
sub-pixel land use composition (Foody & Cox, 1994). Recently, the
model of Cardot et al. (2008) dealt with the inverse problem to
retrieve the seasonal variations in the remote sensing signal of each
land use in each pixel given that the within-pixel land use is known.
Due to its large size – nearly 1 km² – the VEGETATION pixel generally
includes several land uses. As a consequence, the PVI computed from
the VEGETATION observations can be assumed to be a linear
combination of the PVI values specific to each land use element. The
reflectance variability of a given land usewithin a pixel being assumed
relatively small compared to the variability between pixels, the PVI
observed by VEGETATION over the pixel i as function of time (t) i.e. Xi

(t) was modelled as:

Xi tð Þ = ∑
J

j=1
πijρij tð Þ + εi tð Þ t∈ t1 :::::; tp

n o

ρij e N ρj; Γj
� �

; j = 1;:::::J

8>><
>>: ð1Þ

where

i index for pixel
t time, i.e. the 10-day period
p number of 10-day periods
J number of the land use classes
j index for land use class
Xi(t) PVI of the pixel i observed from VEGETATION over the

10-day period t
πij area fraction of the land use j within the pixel i, with

∑
j
πij = 1

ρij(t) PVI of the land use jwithin the pixel i at the 10-day period t
ρj(t) Expectation of the random function ρij(t) for the land use j

at the 10-day period t
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εi(t) error, assumed independent and Gaussian
Γj temporal covariance matrix with the following elements:

⌊Γj⌋l;l0 = cov ρij tlð Þ; ρij tl0
� �� �

; l; l′ = 1; :::::p:

Therefore the estimation of the PVI seasonal variation (ρij(t)) of
each land use class j present in each pixel i was performed assuming
the surface fraction of each land use j (πij) within the pixel i was
known. This unmixing (or disaggregation) of Xi(t) was based on the
varying-time random effects regression model proposed by Cardot
et al. (2008). Introducing random effects allows us to estimate indi-
vidual variations in PVI, i.e. between pixels.

The estimation method is detailed in Cardot et al. (2008). First,
given that πij is known ρj(t), and Γj are estimated from the observed
PVI (Xi(t)) and their temporal covariance (cov(Xi(tl),Xi(tl')) by
maximizing the likelihood. Each individual response ρij(t) is then
predicted using the Best Linear Unbiased Prediction (BLUP) formula.
The two steps include an approximation to the seasonal curves of ρj(t)
and ρij(t) with B-Splines functions, which reduces the number of
parameters to be estimated and smoothes the produced curves.
Finally, this statistical approach produces non-parametric models of
the seasonal variation in PVI, since it is based on the explicit use of the
temporal covariance between numerous VEGETATION observations,
without any prior knowledge of the biological and physical deter-
minism of the seasonal variations in PVI.

The area fraction of each land use within each pixel (πij) was
provided by the seamless vector data of European CLC2000 geo-
graphical database, which describes the land use in 2000 with forty-

four classes and with a minimal mapping unit equal to 25 hectares
(EEA, 2000). About twenty classes of land use were represented in the
study area. The forest ecosystems belonged to three broad classes,
which were kept in their original states: “Deciduous broadleaf forest”,
“Coniferous forest”, and “Mixed forest”. The non forested CLC2000
classes were pooled together to form 2 large classes. The first class,
named “No or Sparse Vegetation”, pooled artificial areas (urban,
industrial) and natural non or sparsely vegetated surfaces. Pixels
including water bodies were discarded from the data set. The second,
named “Agricultural Surfaces”, pooled the non-forest vegetation
classes, mainly composed of crops, pastures, and natural grasslands.
Our main land use of interest, i.e. the deciduous broadleaf forests, was
present in ~70% of the studied pixels, with πij=deciduous varying from
less than 1% to 100%.

The algorithm was applied to the observed PVI of the mean year
(Xi(t)) made up of 25 successive 10-day periods from March 11 to
November 11; i.e. for time t varying between DOY 70 and 315 every
10 days. The used B-Splines functions were parameterized with their
order (q) and the number (k) of interior knots evenly spaced within
the period of interest. These were the same for ρj(t) and ρij(t). Some
tests weremadewith the value range indicated by Cardot et al. (2008)
in order to maximise the modelling accuracy and optimise the
number of land use classes to be used. Thus, in the case of the land use
distribution into the five classes previously described (i.e. J=5), q and
k were defined as follows: q=3, k=5.

In the following, the modelled ρij(t) and ρj(t) will refer to as,
respectively, the individual seasonal (or phenological) response of PVI
at a pixel i level, and to the mean seasonal (or phenological) response
for a given land use j. The 10-day periods will be labelledwith the date
of their first day.
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2.5. Characterising elevation variations in the PVI seasonal response of
deciduous broadleaf forest

The mean elevation of each VEGETATION pixel (cf. Fig. 1) was
estimated by aggregating the Shuttle Radar TopographyMission data at
90 m resolution (USGS, 2005). The relationship between elevation and
the PVI seasonal signature of the deciduous broadleaf forests was
investigated in two complementaryways. First,we examined the spatial
variations in the PVI individual seasonal signatures of broadleaf forests
(i.e. ρij=deciduous(t)). The pixels containing deciduous forests were thus
partitioned into several seasonal curve classes applying the K-means
clustering algorithm of Hartigan & Wong (1979). After some tests, the
number of classes was empirically fixed as being eight in order to best
express the variability of the temporal behaviour of PVI. The distribution
of elevation within and between each produced class was then
investigated. Second, we compared the variations between the PVI
individual seasonal responses averaged by 100 m wide elevation class.

2.6. Leaf unfolding dating

Cardot's model does not produce any parametric function of PVI as
a function of time. Moreover, because of the very high temporal
autocorrelation of PVI induced by the unmixing process, the
parametric regression methods were not well suited to model the
PVI versus time in order to estimate the critical dates of PVI seasonal
changes. Furthermore, as the unmixing provided an estimate of the
PVI of the set of all deciduous broadleaf stands included in each pixel
(i.e. ρij=deciduous(t)), the PVI of each tree population observed at the
ground could not be distinguished and ρij=deciduous(t) could not be
compared directly with the local ground-based phenology observa-
tions. For these reasons, the LUD of broadleaf forests was retrieved
from the VEGETATION observations using the following two steps.

First, over each pixel i, an earliness index IEi was calculated. It was
designed to be an index estimating the advance (IEibLUDREF) or the
delay (IEiNLUDREF) in leafing over each pixel in comparison with the
ground-based mean date of leaf unfolding (LUDREF). PVIREF denoted
the value of the mean PVI (ρj=deciduous(t)) on the day of year = LUDREF

(see Fig. 4). For each pixel i containing broadleaf forests, IEi was
defined as the date at which the individual PVI (ρij=deciduous(t)) was
equal to PVIREF: ρij=deciduous IEið Þ = ρj=deciduous LUDREFð Þ = PVIREF.

PVIREF was estimated by linear interpolation of ρj=deciduous(t)
between the two closest 10-day periods surrounding LUDREF. IEi was
estimated from a linear interpolation of ρij=deciduous(t) within the 10-
day interval including the PVIREF value.

In a second step, the elevation variations in IEi, computed from the
VEGETATION observations, were evaluated by comparing with the
ground-based observations of LUD. As discussed above, a direct
comparison between the retrieved satellite data at pixel level and the
local in situ data could not be made. Therefore, this comparison was
made using averaged values of IEi by 100 m wide class of elevation.
The ground-based mean LUD in each elevation class was given by
LUDd (Cf. Section 2.2, Fig. 3b). The equation linking the two variables
was then statistically calibrated by linear regression. It was applied
over each studied pixel to calculate SLUDi, i.e. the satellite-based leaf
unfolding date. Lastly a SLUDmapwas produced over the whole study
area.

3. Results

3.1. PVI seasonal response of the various land uses

Themean phenological PVI curves obtained for each land use class (ρj
(t)) and the variability (±2 standard deviation) of the estimated
individual PVI are shown in Fig. 4. The seasonal variations of “No or
sparse vegetation” were very weak. Conversely, “Deciduous broadleaf
forest”, “Agriculture surfaces”, and “Mixed forest” showed the highest

amplitudes during the year. The greatest variability of PVI individual
values was observed with the two former classes. It was maximal for the
“Agricultural surfaces” class, which regroups various crops and grasslands
with different seasonal leaf area cycles due to species and crop calendars
diversity. The mean curve for broadleaf forests is realistic and consistent
with ground observations: a minimum and maximum, occurring
respectively in March (DOY=80) and in June (DOY=162), was in
agreementwith the time interval of theoakandbeechflushing (fromDOY
80 to 150, Fig. 3). The individual PVI variability was maximal during the
transitional periods of foliar phenology: at the end of winter and the
beginning of spring,when the annual growth cycle of leaves started again,
and in fall, when the cycle finished with senescence, i.e. yellowing and
falling of leaves. A lowerdynamics throughout the year canbe seen for the
coniferous forests, where non deciduous species were dominant.

3.2. Accuracy in the unmixed PVI seasonal response of deciduous
broadleaf forest

Fig. 5 shows the distribution of errors on the modelled individual
responses and their seasonal variations for the pixels containing
broadleaf forests. These are the residuals between the observed PVI

(Xi(t)) and the modelled PVI (∑
J

j=1
πijρij tð Þ). The errors were minimal
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when the number of PVI data per 10-day period used to calculate the
mean year is maximal, i.e. when NMODRwhich is the number of times
when NMODN2 equalled 5. This was the case from DOY 141 to DOY
284 except on DOY 223. It is likely that the isolated very high errors
obtained for DOY 223 could be attributed to an insufficient filtering of
pixels contaminated by clouds in 2006. Nevertheless, the largest
errors occurred mainly before DOY 141, when many data were
missing, especially in 2004 and 2005, due to clouds and snow. Thus, at
the end of winter and at the beginning of spring, NMODR was often
less than 5 and the index of quality NMOD was often lower than for
the rest of the year. Finally, we can consider that the unmixing
smoothed the impact of erroneous values of instantaneous PVI due to
cloud or snow effects and reduced the noise induced by missing data.

The accuracy of PVI individual seasonal responses estimates
(ρij=deciduous (t)) of broadleaf forests seems to depend strongly on
their proportion (πij=deciduous) within the pixel. As shown in Fig. 6, the
smaller πij=deciduous, the smaller the deviation of the individual PVI
from the mean response of the land use class (ρj=deciduous(t)), namely,
the PVI signature of the deciduous fraction within the pixel became
identical to the mean PVI response of deciduous forests, computed
over the whole study area. The deviation was almost equal to zero
when πij=deciduous was smaller than 10%. This underestimation of the
individual effect – in absolute value –was found to be very significant
when πij=deciduous was lower than approximately 40% (Cf Fig. 6).
Consequently, we assumed in this study that the estimates of PVI
individual seasonal responses of deciduous forests were not satisfac-
tory as long as πij=deciduous was lower than 40%. In the following, only
the pixels exceeding this threshold of 40% will be analysed. The latter

represented 3183 pixels over the 8975 pixels containing broadleaf
forests; approximately 20 times more than the 139 pure pixels (cf.
Table 1) which would be studied if unmixing was not used. These
3183 pixels provided a large sampling of the elevation range from 0 to
1700 m over the Pyrénées study area (Table 1).

3.3. Effect of elevation on the PVI seasonal response of deciduous
broadleaf forest

The K-means classification over the deciduous forests led to pool
the individual seasonal curves ρij=deciduous(t) of similar shape (Fig. 7).
The eight obtained classes showed various seasonal patterns of PVI
(Fig. 7b), which appeared to depend mainly on elevation (Fig. 7c).
Their spatial distribution also exhibited a patchy structure which
seems to reflect the relief pattern (Fig. 7a). Therefore, the classes with
the lowest PVI at the beginning and at the end of the annual cycle
(classes 1 to 4) could be foundmostly in the southern part of the study
area at the highest elevations (approximately N500 m) and their
seasonal amplitude was the greatest. Conversely, K-means classes
with the highest PVI values at the onset and at the end of the year
(classes 5 to 8) were located in the plain or hilly area (approximately
b500 m) in the northern part of the study area. The date at which the
maximal PVI was reached increased as elevation increased. The PVI
seasonal pattern was found to be more sensitive to elevation (Fig. 7c)
within the group of classes 1 to 4, i.e. for elevation N500 m, than
within the other group (classes 5 to 8) at lower elevation. However,
the gradation of the eight PVI curves within each group over the
whole annual cycle, given in Fig. 7b, was not in close agreement with
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that of elevation. It also depended on the area fraction covered by
deciduous as shown in Fig. 7d. In addition, an analysis of variance
(one-way ANOVA) showed elevation and πij=deciduous were signifi-
cantly different between the eight PVI signature classes with F-
statistics equal respectively to 788.4 and 88.4, i.e. p-valueb0.0001 for
degree of freedom=7 for both variables. In addition, a multiple
comparison of means (paired t-tests with Bonferroni correction)
showed there was a significant difference (p-valueb0.001) between
all K-means classes inmean elevation, except between classes 2 and 3,
5 and 7, 6 and 8, and in mean πij=deciduous, except between classes 1
and 3, 2 and 4, 2 and 8, 4 and 8, 6 and 7.

Furthermore, when the PVI individual curves were averaged by
100 m wide class of elevation (Fig. not shown, results are similar to
those given in Fig. 7b), it was found that the seasonal course of PVI
changed progressively with elevation increase. For instance, as
elevation increases, we note a decrease in PVI at the beginning and
the end of the vegetation cycle (black arrows in Fig. 7b) and a shift in
the peak of maximal PVI from the spring end towards the summer
onset with shortening of the duration of high PVI values (white
arrows in Fig. 7b). The weaker sensitivity of the PVI seasonal course to
elevation for elevation lower than 500 m was confirmed. The PVI
curves of the five lowest altitude classes (b500 m) are very close
before DOY 125 (i.e. before budburst) and almost identical at the end
of the fall during the phase of foliage senescence (after DOY 200).
During the phase of green-up in spring (between DOY 80 and DOY
162), the time delay in the PVI spring increase happens without
change in slope when mean elevation decreased from 1700 m to
500 m. Below 500 m, during the same phase, the slope of PVI as a

function of time was slightly reduced with elevation decrease and it
was minimal for elevation lower than 100 m.

3.4. Leaf unfolding date

The PVIREF, i.e. the value of mean PVI for the mean date of leaf
unfolding LUDREF (=105.5) was equal to 0.0485. A strong linear
relationship was found between IE, i.e. the date when individual PVI
reached PVIREF, and LUD, i.e. the ground-based leaf unfolding date —

which were both averaged by 100 m wide class of elevation (Fig. 8).
Moreover, no difference was found when taking into account either
mixed or pure pixels. The RMSE (root mean square error) of the mean
LUDpredicted from themean IE for each 100 mwide elevation class by
using regression models calculated over pixels with πij=deciduousN40%
and over only pure pixels were similar and equal to approximately
2 days (1.8 and 2.1 days respectively). Themean biaswas close to zero
in both cases. However, for πij=deciduousN40% the slope of IE as a
function of LUD was lower for LUDb110, i.e. for forests located at
elevation b500 m, than for LUDN110 (Fig. 8). In order to reduce
possible errors due to the unmixing method, the equation of
regression fitted over pure pixels was applied to each individual
value of IE to compute the satellite-based estimates of LUD (SLUD),
which is given by SLUD=1.83 IE−82.7. This estimation was not
possible for a few pixels whose PVI was always greater than PVIREF in
spring. Fig. 9 shows the variations in SLUDas a function of the elevation
for πij=deciduousN40% and for pure pixels. SLUD averaged by 100 mwide
class of elevation seemed globally consistent with the elevation
pattern of LUD estimated from the field observations. In addition, the
individual SLUD values are distributed more or less symmetrically
around this ground-based pattern. However, for πij=deciduousN40%,
when the elevation is smaller than 500 m, SLUD appears to be slightly
overestimated: many retrieved values are concentrated near DOY 105
and the SLUD values averaged by elevation class have an elevation
variation lower than the ground-based LUD. These effects were clearly
attenuated for πij=deciduousN60% (not shown) and disappeared for pure
pixels. Whatever the elevation, the dispersion of individual values of
SLUD was very large, approximately ±20 days. The spatial pattern of
SLUD is shown in Fig. 10. The impact of the relief can be clearly seen for
forests inmountains, with SLUD varyingmainly betweenDOY 115 and
140 (i.e. from 25 April to 30 May) similarly to in situ observations. In
the forests of plain, hill or piedmont SLUD showed a clear spatial
pattern. It spanned the large range of values – approximately from
DOY 85 to 115 (i.e. from 25 March to 25 April) – measured at ground
level on beech and oak populations.

4. Discussion

4.1. Remote sensing time-series

All results presented in this study are based on the analysis of the
seasonal variability of the five-year average PVI vegetation index derived
fromVEGETATIONdatameasuredduring5 successive years from2002 to
2006. The building of an averaged 2002–2006 year allowed us to fill the
large temporal gaps in the VEGETATION time-series due to cloud and
snow presence – frequent inmountains – at the end of winter and at the
beginning of spring, i.e. the period of green-up of deciduous forests.
Methods based on a spatio-temporal smoothing of data year by year (e.g.
Gao et al., 2008), or on the use of a compositing interval wider than
10 days could not provide satisfactory results (Robin et al., 2008), since
they would limit capabilities to detect gradual changes in green leaf area
due to leafflushing and to date accurately leaf unfolding. Aggregating the
pixels also could not be a suitable solution. In mountains, the coarse
resolution pixel, for instancewith the global 8 kmAVHRRdata oftenused
at continental scale, includes a range of elevation which is too large to
capture accurately the interannual changes in phenology of broadleaf
forests (Maignan et al., 2008). The number of available VEGETATIONdata

Table 1
Characteristics of pixels including deciduous broadleaf forest as a function of elevation.
The cloudy or snowy pixels and those with fraction of deciduous broadleaf forests
πij=deciduous b40% were not taken into account.

Elevation
classe

Elevation range
(m)

Mean elevation
(m)

Mean
πij=deciduous (%)

Pixels
number

(a) pixels with πij=deciduousN40%, n=3183
0 0–100 65 55 152
1 100–200 148 57 481
2 200–300 249 58 735
3 300–400 344 61 458
4 400–500 445 63 309
5 500–600 548 63 182
6 600–700 647 67 148
7 700–800 751 72 134
8 800–900 850 75 123
9 900–1000 945 75 124
10 1000–1100 1046 76 112
11 1100–1200 1148 76 78
12 1200–1300 1251 75 75
13 1300–1400 1343 68 50
14 1400–1500 1429 64 14
15 1500–1600 1554 52 6
16 1600–1700 1626 46 2

(b) pure pixels (πij=deciduous=100%), n=135
0 0–100 0
1 100–200 138 100 4
2 200–300 256 100 14
3 300–400 351 100 8
4 400–500 438 100 5
5 500–600 548 100 7
6 600–700 651 100 9
7 700–800 754 100 19
8 800–900 850 100 12
9 900–1000 939 100 19
10 1000–1100 1038 100 19
11 1100–1200 1149 100 10
12 1200–1300 1244 100 10
13 1300–1400 1368 100 3
14 1400–1500 0
15 1500–1600 0
16 1600–1700 0
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per 10-day period for each selected pixel was variable in spring during
the 2002–2006 period: varying from 1 to 5. This might have a strong
impact on the estimates of the 5-year mean PVI. However, the resulting
noise seemed to have been smoothed by the Cardot's algorithm, as
suggested by the seasonal distribution of errors between modelled and
observed data averaged over the five years (cf. Fig. 5). Finally, although
averaging the VEGETATION data over five years into a single represen-
tative year led to a loss in information about the interannual variability of

leaf phenology, this approach made it possible to investigate the
elevation variations in the seasonal remote sensing response over a
large range of elevation (0–1700 m) and over a very short range of
latitude (approximately 1°) covering a relatively small area.

As measurements of the reflectance of soil under the forest canopy
of the study area were unavailable, the parameters of the soil line
equation were estimated from the VEGETATION data on pure pixels of
bare rock in summer. Their values were close to those estimated in

Fig. 7. Variations in individual PVI seasonal curves of deciduous broadleaf forest summarised from a K-means classification applied over pixels with fraction of broadleaf forest
πij=deciduousN40% (n=3183): (a)Map of the eight classes of curves. Background: elevation in grey tones with isolines (100, 250, 500, 1000, 1500, and 2000 m) (b) Curves of centres of
classes. Arrows symbolise the main effects of elevation increase (c) Distribution of the mean elevation of the pixels within each class (d) Distribution of πij=deciduous of pixels within
each class (quantiles: 5, 25, 50, 75, and 95 in both boxplots).
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winter from the same VEGETATION time-series on pure pixels of
maize crops located on the sandy soils of South-West France (Guyon
et al., 2006). In both cases the slope of the soil line was smaller than
unity (0.757 for the bare rock, 0.883 for the sandy soils). The use of
these soil line equations could lead to overestimate the contribution
of NIR in the PVI formula compared to that estimated from ground

measurements over various soil types (whose slope has been found to
be always greater than unity (Gilabert et al., 2002; Rondeaux et al.,
1996)). Nevertheless, possible errors in the estimation of PVI should
be not critical in our study, since the calculation of the soil line
equation was made from the same dataset, i.e. with the same spectral
sensitivity and with the same radiometric processing.

The Cardot's method was used to unmix the seasonal radiometric
response of each land use class present within each 1-km² pixels. It
allowed us to assess the elevation variations in the phenological
behaviour specific to the deciduous broadleaf forests, even though
this land use class pooled several tree species and various forest types.
Thus, all pixels which spanned the whole elevation range (from 0 to
1700 m) of the deciduous forests in the study area could be analysed.
Using only pure pixels (n=139), a more restricted range of elevation
(from 100 to 1300 m) could be explored because of the fragmentation
of the forests at a scale of 1-km² pixel. Nevertheless, the individual
response of broadleaf forests could not be accurately unmixed for
pixels when the area fraction of this forest type is a too low (b20%).

4.2. Retrieving the seasonal dynamics of deciduous broadleaf forest

The retrieved seasonal dynamics of the PVI vegetation index is
consistent with the seasonal changes in the green leaf area expected
over the study area. As expected, seasonal variations in PVI were
stronger for deciduous broadleaf forests than for forests including
evergreen species (i.e. coniferous). The elevation gradient of temper-
ature explains a large part of the spatial distribution of the PVI
phenological responses of the deciduous forests. Shortening of the
vegetative season length through elevation was revealed in the delay
of the PVI increase in spring and the advance of its decrease in fall, as
observed by Beck et al. (2008) for seasonal trajectory of NDVI of
deciduous and mixed forests ranging from 1000 to 2900 m in China.
The decrease in PVI in autumn was more variable than its increase in
spring (as shown in Fig. 7b). This could attest the complexity of the
determinism of processes of yellowing and falling of foliage compared
to the leafing ones. For instance Vitasse et al. (2009b) found no
correlation between senescence and air temperature for ash (Fraxinus
excelsior) and sycamore maple (Acer pseudoplataneous). Plain and hill
forests showed phenological patterns quite different from mountain-
ous ones, particularly with a greater earliness of maximum PVI which
is likely to be due to the earlier growth of leaves. Other factors related
or not to elevation contribute to enhance the patchy pattern of the
spatial distribution of PVI phenological responses, such as the
elevation or geographic range of tree species which differ in their
phenology sensitivity to temperature. It is likely the elevation range of
species led to accentuate the difference between mountain and low-
lying areas since the pure forests of beech were more frequent in
mountains. Conversely, for elevations lower than 500 m, the sensi-
tivity of PVI phenology to the elevation gradient of temperature was
most likely attenuated by the geographic pattern of species. At low
elevation, the pure forests of sessile oak and the forests containing
various deciduous species (such as ash and beech) with different
phenological properties (Vitasse et al., 2009a,b) were not located in
the same areas. The effect of the within-pixel fraction of deciduous
forest over the PVI seasonal course, shown in Fig. 7d and by the
ANOVA tests, could be an artefact due to the unmixing method.
However it could also express the high heterogeneity in species
composition of the very fragmented forests of the study area. Lastly,
the understory vegetation plays certainly a central role in the seasonal
course of reflectance of forest stands (Rautiainen et al., 2009). Its
impact should be considered in the analysis, especially for forest types
where the undergrowth species leaf out before the tree layer ones
(Ahl et al., 2006). Nevertheless, our results were consistent with those
of Vitasse et al. (2009a) based on ground observations, which showed
that the timing of leaf unfolding of trees is mostly determined by

Fig. 8. Linear regression between satellite-derived earliness index (IE) and ground-
based leaf unfolding date (LUD). Both are averaged by 100 m wide elevation class.
Results for pixels with a fraction of deciduous broadleaf forest πij=deciduousN40% and for
pure pixels (100%). RMSE is equal to 1.8 and 2.1 days, respectively.
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spring temperature and its altitudinal gradient and that it strongly
differed among species.

4.3. Satellite-based estimates of elevation variations in leaf unfolding
date

The elevation variations in satellite-based estimates of leaf
unfolding date (SLUD) averaged by 100 m wide class of elevation
agree with the mean elevation pattern of LUD observed at the ground
(LUDd), although the latter was calculated by assuming the deciduous
forests are composed only of sessile oak and beech. They reproduced
quite well the mean delay of approximately 2.3 days for each 100 m
elevation increase over the whole elevation range (0 to 1700 m).
Nevertheless for low elevations (b500 m) the sensitivity of SLUD to
elevation was lower than the expected one: the mean delay was
approximately 1.5 days 100 m−1. It is likely this was due to the
presence of species different from beech and oak, and also, to the
inaccuracy of the unmixed PVI response in the pixels including a low
fraction of deciduous forest. In addition, the expected estimation error
of SLUD for a given elevation was approximately 2 days (cf. Fig. 8).
This accuracy can be considered as satisfactory since it would allow us
to detect changes in leafing timing of deciduous broadleaf forests with
a magnitude equivalent to that due to an elevation variation of 100 m
(2.3 days on average), or in other words, to that caused by a variation
in the mean annual air temperature of 0.5 °C. These results make us
confident in the robustness of the mean leaf unfolding dates
estimated per 100 m wide class of elevation from the VEGETATION
time-series averaged on five successive years to monitor the long-
term trends under the climate change.

The estimation of the leaf unfolding date at pixel level was likely to
be less accurate. The variability of the estimates for a given elevation is
high, i.e. approximately ±20 days around the mean elevation pattern
(Fig. 9). This variability seems to be not too excessive in comparison
with the one observed at ground level between tree populations of all
species (cf. Fig. 3, Vitasse et al., 2009b). Some possible sources of
variability can be mentioned. The impact of the species composition
(Fisher et al., 2007), of the frequency and mixture of species present
within each pixel (Badeck et al., 2004) and of the errors due to the
unmixing method have already been discussed. The possible effect of
elevation variations within each pixel (cf. Maignan et al., 2008) can be
assumed to be as relatively low: the within-pixel standard error of
elevation is lower than 190 m over all pixels containing deciduous
forests and is lower than 39 m for 75% of these pixels. Other sources of
variability in the leaf unfolding date at pixel level are the microcli-
matic conditions which have an influence on air temperatures (Fisher

et al., 2006), changes in land use, sylvicultural or accidental forest
changes due for instance to timber felling or fire, uncertainties in the
pixel geolocation, etc. In addition, the compositing of VEGETATION
data by 10-days intervals and their normalisation of directional effects
on large periods (up to 30 days) could also bring a significant part of
uncertainty on the dating, as the distribution of acquisition dates of
images used for estimating the reflectance value assigned to each ten-
day period varied between pixels (Thayn & Price, 2008). However, the
averaging of the VEGETATION data over five years could attenuate
partly these different effects. A strong consistency in the spatial
pattern of the leaf unfolding dates can be seen in the map given in
Fig. 10, which makes us confident in the quality of the remotely
sensed retrievals at pixel level.

4.4. Interactions between phenology and disturbances in the seasonal
remote sensing signal

As previously mentioned, monitoring of leaf phenology and of its
changes due to climate forcing from satellite observations could be
affected by some seasonal changes in the reflectance resulting from
natural environmental factors or accidental events, (e.g. snowmelt,
drought, forest fires) or from anthropogenic activities (e.g. land use
change, timber felling) (White et al., 2005).

A possible confusion between leaf folding and snowmelt events is
not very likely. On the one hand, every snowy pixel was assumed to be
filtered by the algorithm of the ten-day compositing. On the other
hand, the comprehensive study ofWhite et al. (2009) showed that the
remotely sensed metrics of spring phenology are not correlated
generally to the spring snowmelt onset date over the North America
forest ecoregions. However, this question remains crucial as the used
pre-processing algorithmwhich filtered both snowy and cloudy pixels
was not really designed to detect snow. Future investigations should
take advantage of the use of a specific snow detection algorithm
designed for forest areas, such as that developed by Delbart et al.
(2006) based on SWIR reflectance or of the use of the snow-cover
products such as MOD10A1 from MODIS (Simic et al., 2004). In situ
observations of snow (not available in this study) would also be very
useful to investigate possible correlations between the dates of
snowmelt and leaf unfolding.

Large unusual disturbances (due to natural environmental factors—
e.g. climate, accidents or anthropogenic activities)might have an impact
on the annual vegetation dynamics during the five years of the study
period. Theywere rare, except the extreme drought event that occurred
in Western Europe in summer 2003. It is possible that the latter had
induced in the study area a premature leaf fall during summer and a

Fig. 10. Spatial variations in the individual satellite-based dates of leaf unfolding (SLUD) for pixels with fraction of broadleaf forest πij=deciduousN40% (n=3183). The estimates result
from the application of the linear model shown in Fig. 8 fitted on broadleaf pure pixels (πij=deciduous=100%). Background: elevation in grey tones with isolines (100, 250, 500, 1000,
1500, and 2000 m). Black: pixels where no estimation was possible (n=28).
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disturbance in budburst the following year (Bréda et al., 2006).
Moreover, it is likely that averaging data per 100 m wide elevation
class attenuated a large part of the possible disturbance effects.
Similarly, averaging 5 years of VEGETATION data into a single mean
year to fill the large spatio-temporal gaps also contributed to enhance
the robustness of characterization of the elevation variations in spring
leaf phenology from VEGETATION time-series.

5. Conclusion

This study showed the potential of reflectance time-series at
medium resolution, such as those provided by VEGETATION sensors,
to monitor the elevation variations in leaf phenology over deciduous
broadleaf forests in mountainous regions. The unmixing method of
the 1-km² pixels made it possible to analyse the phenological
behaviour specific to the deciduous forests when the latter were
quite fragmented. The impact of the elevation temperature gradient
on the spring leaf phenology was clearly detected over the study area
with a high spatial and seasonal consistency of the remote sensing
response.

These results were obtained from satellite data averaged over 5
successive years to fill the large spatio-temporal gaps in the
VEGETATION time-series due to clouds and snow. Applying a five-
year running window over many decades, retrospectively from
satellite data time-series accumulated over the most recent
30 years, could provide a robust approach to monitor the trends in
long-term changes in the spring leafing timing along elevation
gradients as a result of phenology adaptation to climate warming or
of changes in the elevation repartition of tree species.

Nevertheless some questions still remain and require more research.
In particular, possible effects of snow melting at the time of vegetation
growth, and of leaf dynamics and senescence in autumn on the forest
remote sensing signatures could not be evaluated in this study. For
instance, the processes of leaf loss and colouring in autumn are complex.
Theymay combine the effects of phenology due to elevation variations in
temperature and to photoperiodwith those due a summer drought. Their
interannual variations in comparisonwith their elevationvariations could
be larger than for leafing in spring. Therefore, in situ continuous
measurements of the annual kinetics of snow melting in spring and of
green LAI, in addition to the observations of phenology (unavailable in the
present study), would be useful in future studies over the study area.
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